

3.3GHz/8.5GHz Spectrum Analyzer

MSA338(E/TG)/MSA358

Operating manual

Ver.2.0/Jun./2015

MICRONIX CORPORATION

OM-040058E

Before Starting to Use the Unit

• When you use the unit, please observe the following notes listed on the rear of the body.

• For you to use it safely

- 1) When abnormal sounds, abnormal smell and smoke were confirmed, remove the battery and AC adapter and stop the use.
- 2) Never use with hands that got wet, because doing so may cause damage, fire and electric shock to the unit.
- 3) Never use it under the thunder. There is a possibility of receiving a thunderbolt.
- 4) Never use an AC adapter other than the one specified, because doing so may cause damage to the unit. For static electricity protection, ground the unit by connecting the three cores if possible. Not grounding the unit can damage it and the object measured.
- 5) Never use a battery other than the one specified, because doing so may cause damage to the unit. When removing or installing the battery, be sure to do it after you turn off the unit and disconnect the AC adapter.
- 6) When replacing the fuse, disconnect the AC adapter, open the battery cover on the back and remove battery, and then take sufficient care to perform the replacement. Use 5A/250V fuse (IEC127-2 sheet 3, slow-blow type).

Never use a fuse not specified because doing so may cause damage to the unit.

· Guarantee of quality

Guarantee period

Guarantees that it will repair any failure free of charge if it occurs because of our responsibility within one year after delivery. However, the above guarantee does not apply to such a failure that:

- 1) is caused by a fire, natural disasters, etc.
- is caused by inappropriate handling of the unit, such as dropping it while moving it after purchasing.
- 3) is caused by handling counter to the instructions or precautions listed in the operating manual.
- is caused by modifying the unit or by being considered to be your responsibility because of inappropriate use.

We will not be responsible for direct or indirect damage caused by use of this product or by a failure of this product.

Warm-up time

In order to stabilize the electric performance at the time of turning on the unit, please perform

warming-up for at least 10 minutes.

The LCD may flicker on conditions of the low temperature and the dark backlight.

In that case, adjust the LCD backlight control BLCTR to be bright.

However, do not be bright too much in order to keep battery operation time longer.

Precautions for storage

- 1) Strictly observe the storage conditions specified for this unit, such as avoiding direct sunlight and dust.
- 2) Store this unit in a place where -20°C to 60°C, less than 60°C/70%RH, variations in temperature and humidity are small.

After service

If you have any question about the contents of this product or how to operate it, please contact us at:

MICRONIX CORPORATION	
2987-2, KOBIKI-CHO, HACHIOJI-SH	II, TOKYO 193-0934 JAPAN
TEL. +81-426-37-3667	FAX. +81-426-37-0227
URL: http://www.micronix-jp.com/	E-mail: micronix_e@micronix-jp.com

1. Outlines	1
1.1 Product outlines	1
1.2 Standard accessories	2
1.3 Optical accessories	2
2. Specifications	3
2.1 Performances	3
2.2 Outline	6
3. Description of Panel	7
4. Description of Screen	10
5. Function Key Menu	11
5.1 List of the function key menus	11
5.2 Menu tree	12
6. Preparing for Operation	17
6.1 Stand	17
6.2 Connection to power supply	17
6.3 Replacing the fuse	18
6.4 Installing the battery	18
6.5 Soft carrying case	18
7. Center Frequency <freq></freq>	19
7.1 Setting with the step keys	19
7.2 Setting with the encoder	19
7.3 Setting with the numeric keys	19
7.4 According to the marker position	20
8. Frequency Span 	20
9. Reference Level <refer></refer>	21
9.1 Setting the reference level	22
9.2 Switching units of amplitude axis	22
9.3 Reference level setting range for each unit	22
9.4 Relation between the reference level and ATT·AMP	23
9.5 Setting the offset level	23
9.6 Setting the input impedance correction	23

10. Display Scale <scale></scale>	24
10.1 Setting with the keys	24
10.2 Setting with the encoder	24
11. Resolution Bandwidth < RBW>	25
11.1 MANUAL mode	25
11.2 AUTO mode	25
11.3 ALL AUTO mode	25
12. Video Bandwidth <vbw></vbw>	26
12.1 MANUAL mode	26
12.2 AUTO mode	26
12.3 ALL AUTO mode	26
13. Sweep Axis · Detection mode <sweep></sweep>	26
13.1 MANUAL mode	27
13.2 AUTO mode	27
13.3 ALL AUTO mode	27
13.4 Setting the detection mode	27
14. AUTO Tuning <auto tune=""></auto>	27
15. Hold/Run <hold run=""></hold>	27
16. Calculation Function <calc></calc>	28
16.1 NORM mode	28
16.2 MAX HOLD mode	28
16.3 MIN HOLD mode	28
16.4 AVERAGE mode	29
16.5 OVER WRITE mode	29
16.6 SPURIOUS FREE mode	29
17. Marker · Peak Search <mkr></mkr>	30
17.1 Moving the marker	31
17.2 Setting the peak search <peak search=""></peak>	31
17.3 Changing the unit of marker point	31

18. Save/Load <save load=""></save>	32
18.1 Save/Load (MSA338(E/TG))	32
18.2 Save/Load (MSA358)	34
19. Measuring Function <meas></meas>	36
19.1 Channel power measurement <ch power=""></ch>	37
19.2 Adjacent channel leakage power measurement <adj ch="" pw=""></adj>	38
19.3 Occupied frequency bandwidth measurement <occ bw=""></occ>	39
19.4 Electric field strength measurement <e ant="" f=""></e>	40
19.5 Magnetic field strength measurement <m f="" probe=""></m>	45
19.6 Frequency counter < Freq COUNT> (factory option)	47
20.EMI test	
20.1 Additional function for EMI test	48
20.2 EMI test	49
21. Screen Control <dspl></dspl>	52
21.1 Adjusting the contrast	52
21.2 Switching ON and OFF the LCD backlight	52
21.3 Adjusting the brightness of the LCD backlight	52
21.4 Inverting the display	52
21.5 Enable or disabling the beep	52
22. Tracking Generator Mode	53
22.1 Specification only for T.G. function	53
22.2 Description of I/O connector	53
22.3 Switching ON and OFF the T.G. function	54
22.4 Normalizing of wave form	54
23. Printing <print> (optional)</print>	55
23.1 Hard copy of the screen	55
24. Data Output <rs232c></rs232c>	
24.1 Selecting the trace to transfer	56

24.2 Selecting the communication speed (baud rate)	56
24.3 Transfer the data	56
25. RS-232C Interface	58
25.1 RS-232C specifications	58
25.2 How to connect	58
25.3 Command description	59
25.4 Input the frequency	64
25.5 Writing of original compensation data	64
25.6 Sample Programs	66
26. PC Software (optional)	67
27. Basis Performance Test	67
27.1 Frequency characteristics	68
27.2 Accuracy of reference level	69
27.3 The display accuracy of the center frequency	69
27.4 The display accuracy of the frequency span	70
27.5 Linearity of the amplitude axis	70

1. Outlines MSA338(E/TG)/MSA358

1.1 Product outlines

MSA338(E/TG)/MSA358 is an authentic spectrum analyzer providing performance and functions that are comparable to those of large-size bench type equipment, in a compact, lightweight and inexpensive model.

1) Compact and lightweight, 1.8 kg(MSA338(E/TG)/MSA358)

The external dimensions are as small as 162 (W) \times 70 (H) \times 260 (D) (mm), and the weight is only 1.8 kg including the battery. It is very convenient for outdoors use and while on business trips.

2)Measuring frequency bandwidth 50kHz to 3.3GHz(MSA338)/50kHz to 8.5GHz(MSA358)

This bandwidth covers those of W-CDMA, CDMA, PDC, PHS, GSM, wireless LAN, Bluetooth, etc.

3) Operation with battery for 150 minutes

When battery MB300 (optional) is fully charged, MSA338(E/TG)/MSA358 works for about 150 minutes (with the back light turned off). It is extremely convenient for outdoor use and for use in the survey of wireless LAN installation environment.

4) Performance that is comparable to that of large-size bench type equipment

MSA338(E/TG)/MSA358 guarantees a highly stable frequency axis by PLL synthesizer system. The center frequency setup resolution is 100kHz. Furthermore, the mean noise level is -110dBm or less. Thus, a broad dynamic range is secured and the reference level can be set in 1 dB steps.

5) Abundant functions

· Measuring functions… Channel power measurement, Adjacent channel leakage power measurement,

Occupied frequency bandwidth measurement, Electric field strength measurement, Magnetic field strength measurement (optional), Frequency counter (factory option).

• Electric field strength measurement: Optimum for measurement of cellular phone and

wireless LAN working environment.

- Magnetic field strength measurement: Optimum for EMI design of printed circuit boards and for evaluation of signal quality.
- · Calculation functions… MAX HOLD, MIN HOLD, AVERAGE, OVER WRITE
- Marker & peak search
 Save/load

6) Auto tuning

The center frequency is set at the spectrum of the maximum level in the 3.3GHz(MSA338(E/TG)) /8.5GHz(MSA358) band, and in addition, optimum reference level, resolution bandwidth, video bandwidth and sweep time are set when the AUTO TUNE key is pressed. This function is very convenient for measurement of an unknown signal.

7) Auto range motion

The resolution bandwidth, video bandwidth and sweep time are set automatically based on the set frequency span. It is also possible to set auto range motion only one out of resolution bandwidth, video bandwidth and sweep time.

8) Hard copy of the image

Connect a printer (optional) and press the [PRINT] key on MSA338(E/TG)/MSA358. The image on the screen is printed as it is.

9) High resolution display on the PC screen

The trace is displayed at high resolution, 1001 points in the horizontal axis, on the PC screen when "PC Software MAS300" (optional) is used.

1.2 Standard accessories

- 1. AC adaptor MA300
- 2. Soft carrying case
- 3. Accessory pouch
- 4. Fuse (It has been installed in the inside)
- 5. Operating manual

1.3 Optional accessories

1. Antenna M301, M302, M303, M304, M305, M306, M307

(Refer to "19.4 Electric field strength measurement" for details.)

2. Magnetic field probe CP-2S with a dedicated double shielded coaxial cable

(Refer to "19.5 Magnetic field strength measurement" for details.)

3. Ni-MH battery MB300 (Refer to "6.4 Installing the battery" for details.)

4. PC software MAS300 (Refer to "26. PC Software" for details.)

5. Operating software for EMI test MAS230 (Refer to the operating manual of MAS230)

6. RS-232C cable MI180 (Refer to "25. RS-232C Interface" for details.)

- 7. Frequency counter (factory option) (Refer to "19.6 Frequency counter" for details.)
- 8. RS-232C/GP-IB converter ZS-61447
- 9. Battery charger MBC300
- 10. Printer with AC adaptor. 4pcs of AA batteries, a roll paper (Refer to "23. Printing" for details.)
- 11. Roll paper for optional printer (with 10 rolls)
- 12. SMA coaxial cables

Model	Connector	Cable length	Frequency range
MC301	SMA(P)/SMA(P)	0.5m	DC to 10GHz
MC302	SMA(P)/SMA(P)	1.0m	DC to 10GHz
MC303	SMA(P)/SMA(P)	1.5m	DC to 10GHz
MC304	SMA(P)/N(J)	0.2m	DC to 4GHz
MC305	SMA(P)/N(P)	0.2m	DC to 4GHz
MC306	SMA(P)/BNC(J)	0.2m	DC to 2GHz
MC307	SMA(P)/BNC(P)	0.2m	DC to 2GHz

* All impedance is 50Ω .

* Performances change by bending and deteriorate by repeating the insertion and extraction 13. Coaxial adapters

Model	Connector	Impedance	Frequency range
MA301	BNC(P)/BNC(J)	50Ω/75Ω	DC to 2GHz
MA302	BNC(P)/N(J)	75Ω/75Ω	DC to 1.8GHz
MA303	BNC(P)/N(P)	75Ω/75Ω	DC to 1.8GHz
MA304	BNC(P)/F(J)	75Ω/75Ω	DC to 1.8GHz
MA305	BNC(P)/F(P)	75Ω/75Ω	DC to 1.8GHz

2.Specifications

2.1 Performances

•Frequency section —

		MSA338(E/TG)	MSA358		
Frequency range		50kHz to 3.3GHz	50kHz to 8.5GHz		
			Frequency	Frequency	Harmonic
			range	band	order
			50k~3.5GHz	Base band	1
			3.3G~6.3GHz	Band 1-	1
			6.1G ~ 8.5GHz	Band 1+	1
Center	frequency				
	Setting	100kHz			
	resolution	Allows Rotary encoder, numeric key and	function key		
	Accuracy	within ±(30+20T)kHz±1dot	within ±(30-	+20T)kHz±1de	ot
		@frequency span: 200kHz to 10MHz,	@frequenc	y span: 200kl	Hz to 10MH
		RBW: 3kHz, 23±5°C	RBW: 3kH	z, 23±5°C	
		within ±(60+300T)kHz±1dot	within ±(60+300T)kHz±1dot		dot
		@frequency span: 20MHz to 3.3GHz,	@frequency span: 20MHz to 8.5GH		
		RBW: 100kHz, 23±5°C	RBW: 100kHz, 23±5°C		
		T: Sweep time(s)		T:	Sweep time(
	RBW	within ±4kHz @ RBW: 3kHz,10kHz, 30kHz			
	frequency	within ±20% of RBW @ RBW: 100kHz, 300kHz			
	error	within ±10% of RBW @ RBW: 1MHz, 3	3MHz		
Freque	ency span				
	Setting range	0Hz(zero span),	0Hz(zero spa	n), 200kHz to	5GHz
		200kHz to 2GHz(1-2-5step) and	(1-2-5step) an	nd 8.5GHz(ful	l span)
		3.3GHz(full span)			
	Accuracy	within ±3%±1dot			
		@ one step slower sweep time than AUT	°O, 23±5°C		
Display resolution Frequency span		Frequency span/250			
Frequency span/1000 (only the measurement by RS-232C					
Display	y dot number	251dots, 1001dots (only the measurement by RS-232C communication)			
		(The unit displays data in 251 horizontal	dots, but it in	ternally captu	res the trace
1001 dots)					
Resolution bandwidth 3dB bandwidth (6dB for MSA338E @9kHz, 120kHz)					

	Setting range	3kHz to 3MHz(1-3step) and AUTO		
		(MSA338E: 3kHz, 9kHz, 30kHz, 120kHz, 300kHz, 1MHz, 3MHz)		
	Accuracy	within ±20%		
	Selectivity	1:12 (typical)@ 3dB : 60dB		
Video	bandwidth	100Hz to 1MHz (1-3step), AUTO		
SSB pl	hase noise	-90dBc/Hz (typical) @100kHz offset, RBW: 3kHz, VBW: 100Hz, Sweep time: 1s		
Spurio	ous response	less than -60dBc		
Harmo	onics	less than -40dBc@100MHz to 3.3GHz	less than -40dBc@100MHz to 8.5GHz	

• Amplitude section

de section		MSA338(E/TG)	MSA358
Referen	ce level		
:	Setting range	+10 to -60dBm (1dB step)	
	Accuracy	within ±0.8dB±1dot	
		@center frequency: 100MHz, RBW: 3MI	Hz, VBW: 1MHz, ATT: 0dB, 23±5°C
	Unit	dBm, dBV, dBmV, dB μ V, dB μ V/m, dB μ A	A/m
		$(dB\mu V/m and dB\mu A/m is used in the$	measuring function)
Average	noise level	-117dBm (typical)	
		@center freq: 1GHz, RBW: 3kHz, VBW:	100Hz
Frequen	cy	Within ±2.0dB±1dot@50kHz to100MHz	Within ±2.0dB±1dot@50kHz to 100MHz
Charact	Characteristic Within ±1.0dB±1dot@100MHz to 3.3GHz Within ±1.0dB±1dot@100MHz to 8.5		Within ±1.0dB±1dot@100MHz to 8.5GHz
Input in	Input impedance 50 Ω		
Input VS	t VSWR less than 2.0		
Input at	tenuator		
Ope	erating range	0 to 25dB (1dB step), coupled with refere	nce level
Swi	tching error	within ±0.6dB@100MHz	
RBW sw	vitching error	within ±0.6dB	
Display	Display dot number 201dots		
Display	Scale	10dB/div, 2dB/div	
scale	Accuracy	within ±0.8dB/10dB±1dot	
		within $\pm 0.2 dB/2 dB \pm 1 dot$	
	within ± 1.6 dB/70 dB ± 1 dot		
Input da	Input damage level +27dBm(CW average power), 25VDC		

• Sweep section

Г		MSA338(E/TG)	MSA358
Sweep time			
	Setting range	10ms to 30s and AUTO(1-3step)	10ms to 30s and AUTO (1-3step)
		@frequency span: 0 to 2GHz	@frequency span: 0 to 2GHz

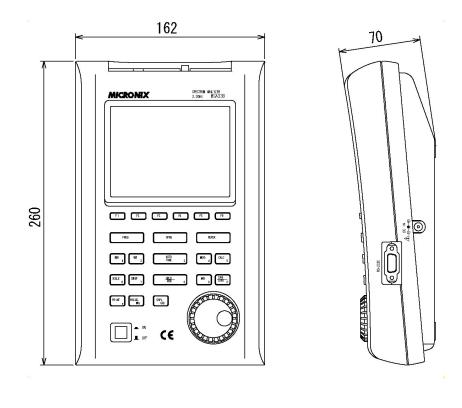
		30ms to 30s and AUTO (1-3step) @frequency span: full span	30ms to 30s and AUTO (1-3step) @frequency span: 5GHz, full span	
	Accuracy	within ±0.1%±1dot@ frequency span: 0	within ±0.1%±1dot@frequency span: 0	
		to 2GHz	to 5GHz	
		within $\pm 1.5\% \pm 1$ dot@ frequency span:	within ±2.5%±1dot@frequency span:	
		full span	full span	
Trigge	er mode AUTO(frequency span: zero span)			
Detect	ion mode	de Positive peak, Negative peak, Sample		
		MSA338E only: Quasi peak, Average		

• Functions

ns		MSA338(E/TG)	MSA358							
Marke	er	NORM: displays frequency (7digits max)	NORM: displays frequency (7digits max) and level (4digits max) at marker point.							
		DELTA: displays differential frequency an	DELTA: displays differential frequency and level between 2 markers.							
Peak s	earch	NORM: searches a peak point within 10di	v. Available NEXT peak (10max).							
		ZONE: searches a peak point within a zon	e designated by center and width.							
		Marker moves to a peak point each	h sweep.							
Calcul	ation	NORM, MAX HOLD, MIN HOLD, AVER	RAGE, OVER WRITE							
		MAX/MIN HOLD: 2 to 1024 times, AVER	RAGE: 2 to 256							
Measu	ring	Channel power, Adjacent channel leakage power, Occupied frequency bandwidth,								
		Electric field strength (needs antenna), Magnetic field strength (needs optional								
		magnetic field probe) measurement, Frequ	ency counter.							
AUTO) tuning	When pushing AUTO TUNE key, the	When pushing AUTO TUNE key, the							
		maximum level spectrum within 3.3GHz	maximum level spectrum within 8.5GHz							
		bandwidth is adjusted to center, and	bandwidth is adjusted to center, and							
		reference level, RBW, VBW and sweep	reference level, RBW, VBW and sweep							
		time are adjusted to optimum values. time are adjusted to optimum values.								
Save/	Save	Saves 100 traces and 100 setups								
Load	Load	Loads 1 trace and 1 setup								

• General

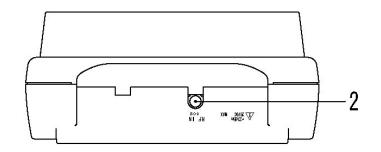
	MSA338(E/TG)/358 common
Immunity of radiated	Less than -35dBc (reference level: 10dBm)
interference	
Level display at 10V/m	
Immunity to cabled interference	Less than -30dBc (reference level: 10dBm)
Level display at transient interference	
of 4.0kV	
Input connector	SMA(J)

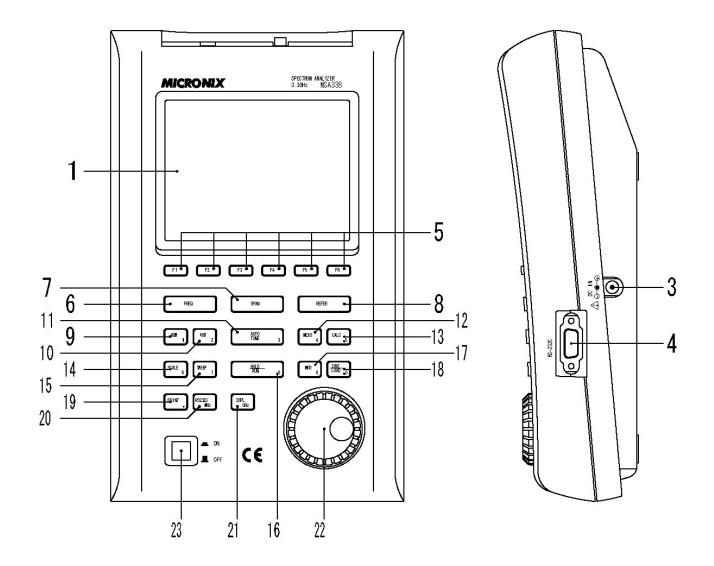

Comm	inication					
	Interface	RS-232C				
	Baud rate	2,400 to 38,400bps				
Hard co	ору	Allows direct hard copy with an optional printer.				
	Display	LCD				
Display	Backlight	CFL backlight				
	Resolution	320 (H) × 240 (V) dots				
Power s	source					
	Battery	Ni-MH battery (optional)				
External DC source		DC jack, +4.75 to +5.25VDC/4A				

• Other

	MSA338(E/TG)/358 common
Operating temperature	0 to 50°C (Guaranteed at 23±10°C, without soft carrying case)
Operating humidity	less than 40°C/80%RH
	(Guaranteed at less than 33°C /70%RH, without soft carrying case)
Storage temperature	-20 to 60°C, less than 60°C/70%RH
Dimensions	162 (W) \times 70 (H) \times 260 (D) mm (exclude projections and stand)
Weight	approx. 1.8kg (include battery), approx. 1.5kg (without battery)

*Refer to "22.Tracking Generator Mode" for T.G. Specification


2.3 Outline



[Unit: mm]

* MICRONIX Corporation reserves the right to make changes in design, specification and other information without prior notice.

3. Description of Panel

1) LCD screen

This is a large liquid crystal display with 240 (V) × 320 (H) dots. It simultaneously displays traces (8 div

 \times 10 div), various setting values, measured values, etc.

2) Input connector

SMA(J) connector.

3) Input connector for DC power source

Connects AC adaptor MA300.

4) RS-232C connector

Connects PC and printer, by using RS-232C cable MI180.

5) Function keys (F1 to F6)

Functions change according to operation. Have functions corresponding to the on-screen displays.

6) Center frequency key

MSA338(E/TG): Use this key to set the center frequency. It can set between 0 to 3.3GHz (100kHz step). MSA358: Use this key to set the center frequency. It can set between 0 to 8.5GHz (100kHz step).

7) Frequency span key

MSA338(E/TG): Use this key to set the frequency span. It can set between 200kHz to 2GHz, ZERO SPAN and FULL SPAN (3.3GHz).

MSA358: Use this key to set the frequency span. It can set between 200kHz to 5GHz, ZERO SPAN and FULL SPAN (8.5GHz).

8) Reference level key

Set the reference level, etc. Reference level can set between +10dBm and -60dBm (1dB step).

9) Resolution bandwidth key

Use this key to set the resolution bandwidth. It can set between 3kHz and 3MHz.

10) Video bandwidth key

Use this key to set the video bandwidth. It can set between 100Hz and 1MHz.

11) AUTO tuning key

Tune up to the maximum level in 3.3GHz(MSA338(E/TG))/8.5GHz(MSA358) zones, and display by the optimal setup. This does not operate normally when the signal level is lower than -40dBm, or when the input frequency is below 50MHz, or when the frequency span is ZERO SPAN or FULL SPAN.

12) Measuring function key

Available for Channel power, Adjacent channel leakage power, Occupied frequency bandwidth, Electric field strength and Magnetic field strength measurement (optional), Frequency counter (factory option)

13) Calculation function key

Available for Max hold, Min hold, Average and Over write.

14) Display scale key

Use this key to select the display scale of amplitude axis from 2dB/div or 10dB/div.

15) Sweep key

Use this key to set the sweep time between 10ms to 30s or set the detection mode.

16) Hold/Run key

Stops or restarts the measurement.

17) Marker & Peak search key

Use this key to set and move a marker.

18) Save/Load key

Saves 100traces and 100setups, and loads 1trace and 1setup.

19) Print key

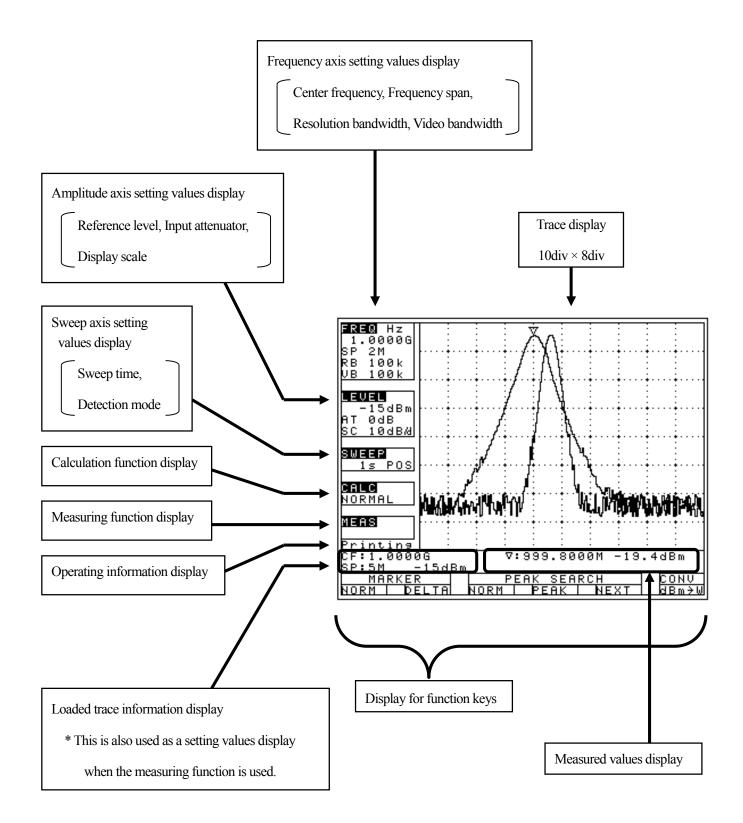
When pressing this key, the image is printed with a printer (optional) as it is.

20) RS-232C key

Sets baud rate and transfers a current or saved trace.

21) Display control key

Sets contrast, backlight ON/OFF, brightness of backlight, invert display and buzzer ON/OFF.


22) Rotary encoder

Use this to make various settings.

23) Power switch

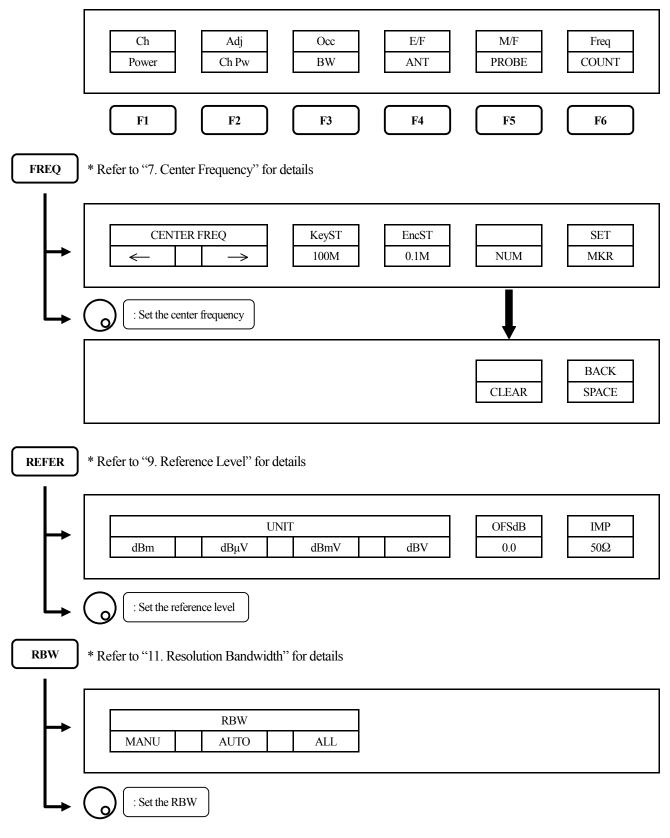
Use this to turn the power ON or OFF.

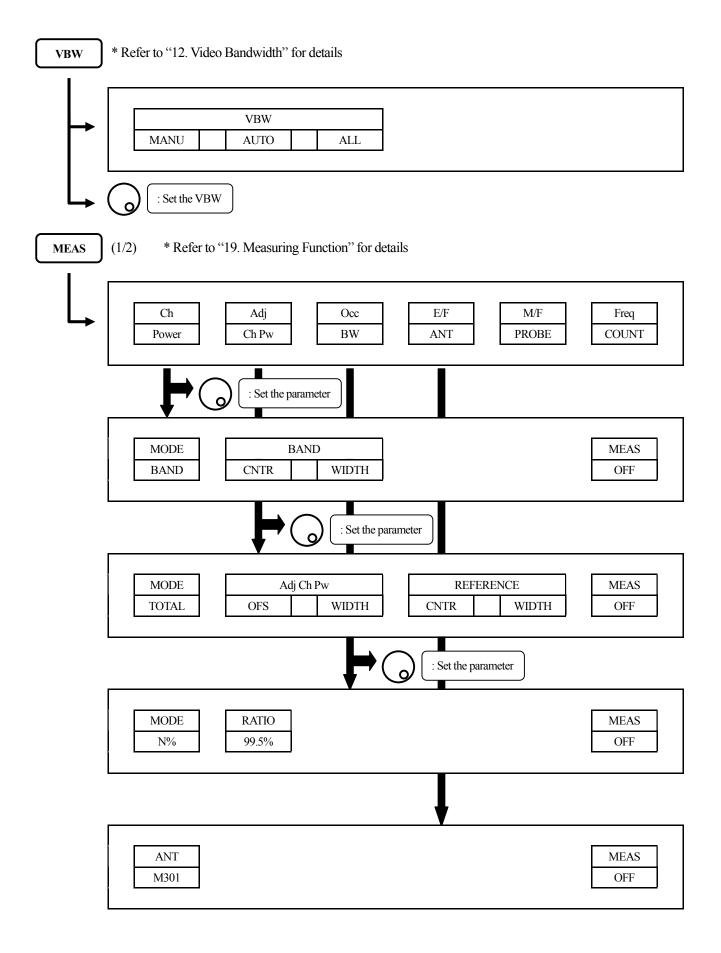
4. Description of Screen

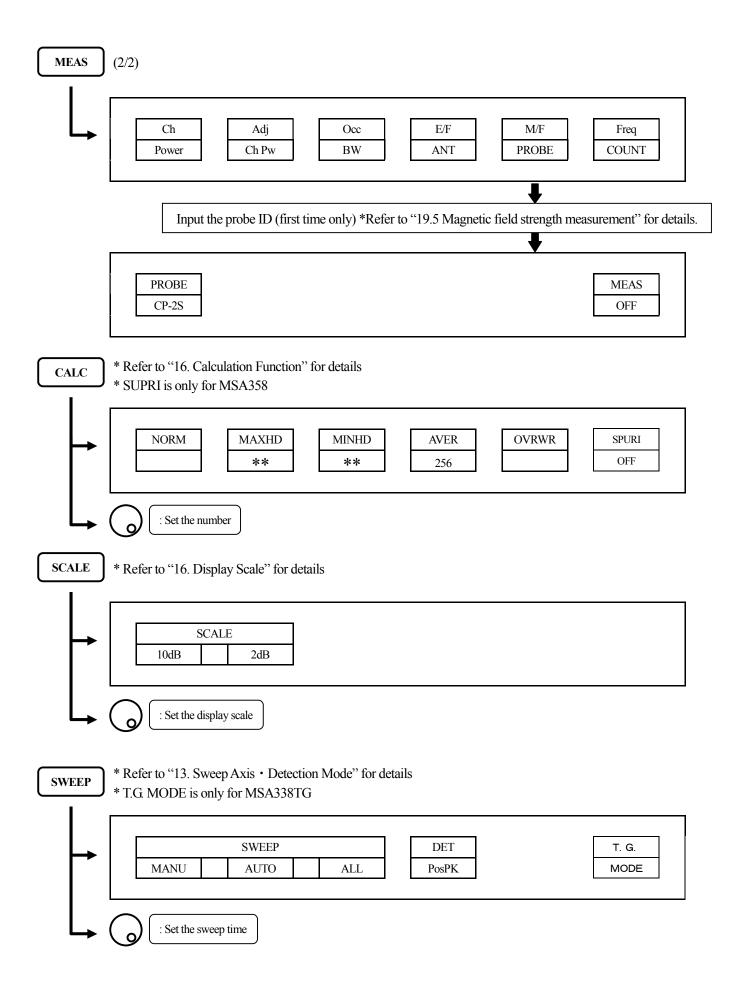
5. Function Key Menu

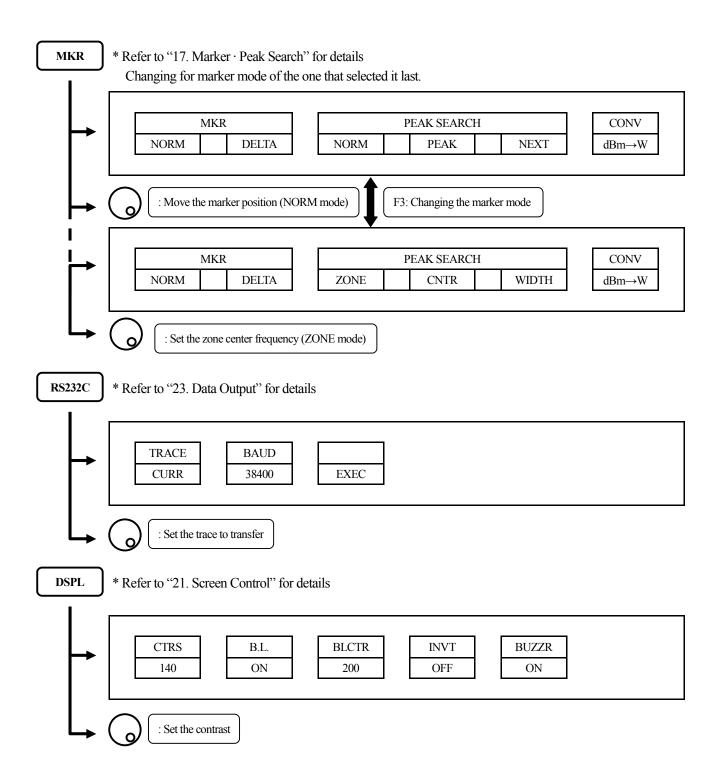
5.1 List of the Function key menus

The types of function keys are shown in the table below. For description of each function, see the detailed pages. For the flow of change in the function key display, refer to "5.2 Menu tree".

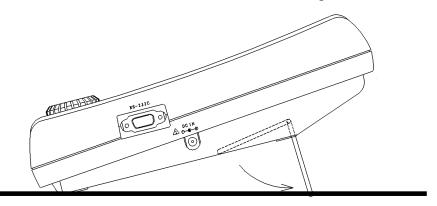

	Function key menus	Key flow	Detailed page	$\left[\right]$	Function key menus	Key flow	Detailed Page
A)	Adj Ch OFS	MEAS→(F2)→F2	38	M)	MODE	MEAS→(F1~3)→F1	37, 38
	Adj Ch Pw	MEAS→F2	38				39
	Adj Ch WIDTH	MEAS→(F2)→F3	38	N)	NORM	CALC→F1	28
	ANT	MEAS→(F4)→F1	41		NORM ※1	SAVE∕LOAD→F6→F1	48
	AVER	CALC→F4	28		NUM	FREQ→F5	19
B)	B. L.	DSPL→F2	52	O)	Occ BW	MEAS→F3	39
	BACK SPACE	FREQ→F5→F6	20		OFSdB	REFER→F5	23
	BAND CNTR	$MEAS \rightarrow (F1) \rightarrow (F1) \rightarrow F2$	37		OVRWR	CALC→F5	29
	BAND WIDTH	$MEAS \rightarrow (F1) \rightarrow (F1) \rightarrow F3$	37	P)	PEAK SEARCH CNTR	MKR→(F3)→F4	31
	BAUD	RS232C→F2	54		PEAK SEARCH NEXT	MKR→(F3)→F5	31
	BLCTR	DSPL→F3	52		PEAK SEARCH NORM	MKR→(F3)→F3	31
	BUZZR	DSPL→F5	52		PEAK SEARCH PEAK	MKR→(F3)→F4	31
C)	CENTER FREQ \rightarrow	FREQ→F1	19		PEAK SEARCH WIDTH	MKR→(F3)→F5	31
	CENTER FREQ ←	FREQ→F2	19		PEAK SEARCH ZONE	MKR→(F3)→F3	31
	Ch Power	MEAS→F1	37		PRE SET	SAVE∕LOAD→F6	33
	CLEAR	FREQ→F5→F5	19		PROBE	MEAS→(F5)→F1	45
	CLEAR	SAVE∕LOAD→F3	33	R)	RATIO	MEAS→(F3)→F2	39
	CONV	MKR→F6	31		RBW ALL	RBW→F3	25
	CTRS	DSPL→F1	52		RBW AUTO	RBW→F2	25
D)	DET	SWEEP→F4	27		RBW MANU	RBW→F1	25
	DISP CLEAR	SAVE∕LOAD→F4	33		REFERENCE CNTR	MEAS→(F2)→F4	38
E)	E/F ANT	MEAS→F4	40		REFERENCE WIDTH	MEAS→(F2)→F5	38
	EncST	FREQ→F4	19	S)	SAVE	SAVE∕LOAD→F1	32
	EXEC	RS232C→F3	56		SCALE 10dB	SCALE→F1	24
	EMI-C ※1	SAVE/LOAD→F6→F2	49		SCALE 2dB	SCALE→F2	24
	EMI-R ※1	SAVE/LOAD→F6→F3	49		SET MKR	FREQ→F6	20
F)	Freq COUNT	MEAS→F6	47		SPURI X2	CALC→F6	29
I)	IMP	REFER→F6	24		SWEEP ALL	SWEEP→F3	27
	INVT	DSPL→F4	52		SWEEP AUTO	SWEEP→F2	26
K)	KeyST	FREQ→F3	19		SWEEP MANU	SWEEP→F1	26
L)	LOAD	SAVE∕LOAD→F2	32	T)	T. G. MODE	SWEEP→F6	53
M)	M∕F PROBE	MEAS→F5	45		TRACE	RS232C→F1	56
	MAXHD	CALC→F2	28	U)	UNIT	REFER→F1~4	22
	MEAS OFF	MEAS→(F1~5)→F6	36	V)	VBW ALL	VBW→F3	26
	MINHD	CALC→F3	28		VBW AUTO	VBW→F2	26
	MKR DELTA	MKR→F2	30		VBW MANU	VBW→F1	26
	MKR NORM	MKR→F1	30			I A358 only	,


-11-


5.2 Menu tree


The displayed items on the bottom of the screen correspond to the function keys under them, as shown in the figure below:

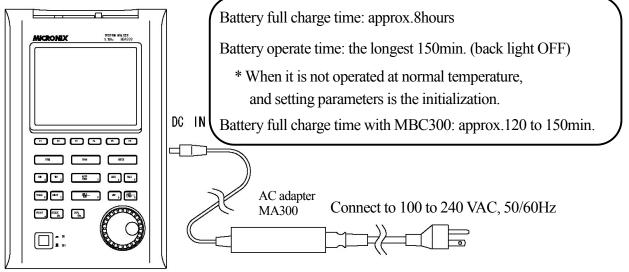
"Displayed items on the bottom of the screen"



SAVE/LOAD * Refer to "18.1 Save/Load (MSA338 (E/TG))" for details
TRACE PARAM EXECUTE PRE 00 00 SAVE LOAD DEL SET
: Set the address to store the trace
SAVE/LOAD * Refer to "18.2 Save/Load (MSA358)" for details Main menu
MODE SELECT DISP PRE SAVE LOAD CREAR CLR SET
Save menu
TRACEPARAMEXEC0000SAVE
: Set the address to store the trace or parameter
Load menu
TRACEPARAMEXEC0000LOAD
: Set the address to call the trace or parameter
Delete menu
TRACEPARAMEXEC0000CREAR
: Set the address to elimination the trace or parameter

6. Preparing for Operation

6.1 Stand

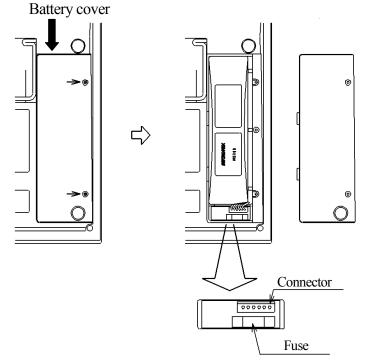

Utilize the stand on the back to use the screen in an easier-to-see angle on the desk.

6.2 Connection to power supply

The MA300 AC adapter is both for the use with AC power supply and for charging the MB300 built-in battery (optional). (charge is started automatically if AC adapter is connected)

Connect the adapter as in the figure below and connect the AC plug to the power line (100-240 VAC, 50/60 Hz). For static electricity protection, ground the unit by connecting the three cores if possible. Not grounding the unit can damage it and the object measured. Do not use an AC adapter other than the MA300 supplied with the unit. Using an AC adapter other than the MA300 may cause damage to the unit.

* If the voltage of a battery becomes low at the time of battery operation, it will be displayed on a screen as "Low Batt", and a buzzer will sound (it sounds, even if it is set up so that a buzzer may not sound), and a power supply will be shut off within several minutes. At that time, since the switch is the position of "ON", please push once and return to the position of "OFF". If it is with the position of "ON" after a power supply is shut off, it discharges inside, will be in electric overdischarge state, and becomes the cause of contracting the life of a battery. Please take care.

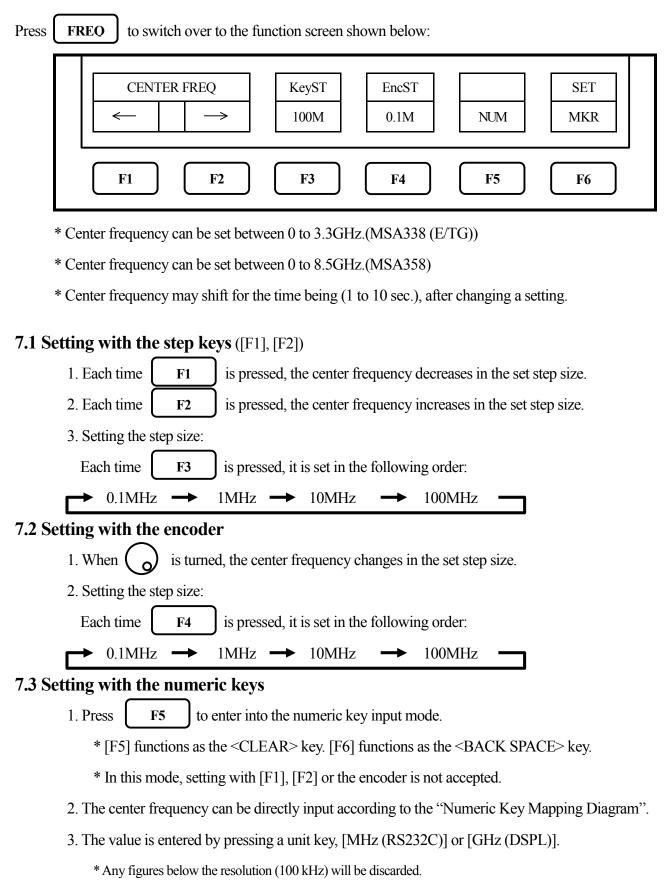

- * Moreover, under low temperature (near 0°C), since a battery performance falls and voltage becomes low, even when capacity remains enough, it may display on a screen as "Low Batt".
- * When a battery repeats charge and electric discharge, the fall (the fall of capacity and increase in internal resistance) of a battery performance begins from about 200 times, and capacity falls to the original half by about 500 times also under good conditions. On bad conditions (high temperature, etc.), the life of battery will be shorter than this.

6.3 Replacing the fuse

5A/250V fuse (IEC127-2 sheet3, slow-blow type) is used for the battery power supply. When replacing it, turn the power off first, disconnect the AC adapter, remove the battery cover and on the back as shown in the figure below, remove the battery, and then take sufficient care to perform the replacement. Be sure to use the fuse supplied with the unit, or specified one.

6.4 Installing the battery

When installing the battery, turn the power off first, disconnect the AC adapter, open the battery cover on the back of the unit after removing the two screws as shown in the figure below, and then take sufficient care to perform the installation. Be sure to use the specified battery, MB300.



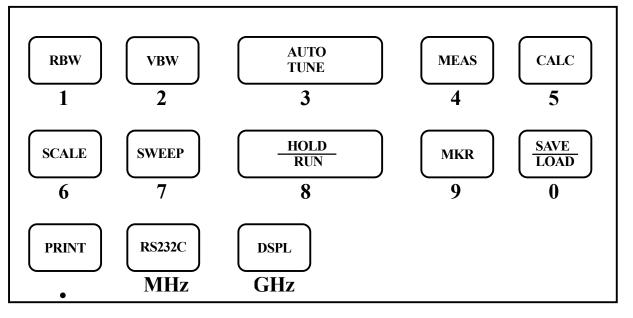
6.5 Soft carrying case

When carrying the unit or using it outdoors, the soft carrying case is convenient. You can also carry the AC adapter and printer with it, putting them in the accessory pouch.

* Avoid using the unit in the soft carrying case in places where temperature is high because, with the soft carrying case, the temperature inside becomes higher than the ambient temperature.

7. Center Frequency <FREQ>

4. Changing the setting:


F5 : Deletes the entire value and allows you to input one from the beginning.

F6 : Deletes the last input figure.

5. Canceling the numeric key mode:

FREO : Enables setting with step keys ([F1], [F2]) or the encoder again.

"Numeric Key Mapping Diagram"



7.4 According to the Marker position

1. When $\mathbf{F6}$ is pressed, the center frequency is set according to the frequency of current marker position.

* Any figures below the resolution (100 kHz) will be discarded.

* This does not operate when the marker is not displayed. (and the function display disappears.)

MSA358: When \bigcirc is turned, the frequency span changes in the specified step. ZERO \leftrightarrow 200k \leftrightarrow 500k \leftrightarrow 1M \leftrightarrow 2M \leftrightarrow 5M \leftrightarrow 10M \leftarrow \downarrow 20M \leftrightarrow 50M \leftrightarrow 100M \leftrightarrow 500M \leftrightarrow 1G \leftrightarrow 2G \leftrightarrow 5G \leftrightarrow FULL (8.5G) [Hz]

Switching frequency band

MSA358 consists of the following three bands.

Frequency band	Measured frequency range
Base band	50kHz to 3.5GHz
Band 1 -	3.3GHz to 6.3GHz
Band 1 +	6. 2GHz to 8.5GHz

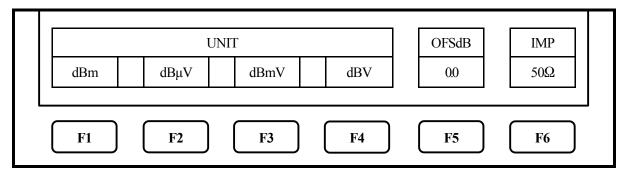
The frequency band is selected to be the least band number, based on Center frequency and Span.

(At the span less than 200MHz, only one band is used.)

When the setting frequency range belongs to two bands, the lower band has priority.

Note: Switch frequency band allows only to automatic setting.

The frequency connection point of two bands is fixed as below table.


Two bands	Frequency connection point
Base band and band 1 -	3.4GHz
Band 1 – and band 1 +	6.2GHz

Note: The trace may fall into disorder just a little at the frequency connection point. For the precise measurement is needed, Center frequency or Span should be set so that the measured frequency range is in one band.

9. Reference Level <REFER>

Press

REFER to switch over to the function screen shown below:

9.1 Setting the Reference level

1. When $\left(\begin{array}{c} \mathbf{o} \end{array}\right)$ is turned, the reference level changes.

(Refer to "9.3 Reference level setting range for each unit" for details.)

9.2 Switching units of amplitude axis (Refer to "19.4 Electric field strength measurement" and

"19.5 Magnetic field strength measurement" for $dB\mu V/m$ and $dB\mu A/m$.)

1. PressF1to switching units to dBm.PressF2to switching units to dBμVPressF3to switching units to dBmVPressF4to switching units to dBV

9.3 Reference level setting range for each unit

UNIT	dBm	dBµV	dBmV	dBV
MAXIMUM	10	117	57	-3
MINIMUM	-40	67	7	-53
MINIMUM (shifted trace data)	-60	47	-13	-73

"Unit that is able to use it with the measuring function"

UNIT	Ċ	lBμV/m (dBµA/m (Magnetic field trength measurement)					
Setting	M301	M302	M307	CP-2S				
MAXIMUM	143	146	148	150	137	159	141	160 to 203
MINIMUM	93 96 98 100 87 109 91					91	110 to 153	
MINIMUM (shifted trace data)	73	76	78	80	67	89	71	90 to 133

* When the reference level is set between the "MINIMUM" and "MINIMUM (shifted trace data)", the trace in "MINIMUM" is shifted and displayed on a screen. When the reference level is set below to the "MINIMUM", the ATT display area is displayed as "S/W AMP".

Calculation expression (conversion formula to and from dBm)

 $\cdot A [dB\mu V] = 107 + X [dBm]$ $\cdot B [dBm V] = 47 + X [dBm]$ $\cdot C [dBV] = -13 + X [dBm]$

· D [dB μ V/m] = 68.8/ λ × $\sqrt{(X/Gar)}$ [dBm] λ : Wavelength[m] Gar: Antenna absolute gain [times]

 $\cdot E [dB\mu A/m] = 107+X+F [dBm]$ F: probe calibration coefficient * changes by frequency

9.4 Relation between the reference level and ATT · AMP (in dBm indication)

The programmable attenuator (ATT) and the input amplifier (AMP) inside MSA338/MSA358 are a automatically set according to the setting value of the reference level (REFER). (ATT cannot be set independently.)

REFER (dBm)	ATT (dB)	AMP (dB)									
10	25	0	-3	12	0	-16	20	21	-29	7	21
9	24	0	-4	11	0	-17	19	21	-30	6	21
8	23	0	-5	10	0	-18	18	21	-31	5	21
7	22	0	-6	9	0	-19	17	21	-32	4	21
6	21	0	-7	8	0	-20	16	21	-33	3	21
5	20	0	-8	7	0	-21	15	21	-34	2	21
4	19	0	-9	6	0	-22	14	21	-35	1	21
3	18	0	-10	5	0	-23	13	21	-36	5	26
2	17	0	-11	4	0	-24	12	21	-37	4	26
1	16	0	-12	3	0	-25	11	21	-38	3	26
0	15	0	-13	2	0	-26	10	21	-39	2	26
-1	14	0	-14	1	0	-27	9	21	-40	1	26
-2	13	0	-15	0	0	-28	8	21			

* When the input signal level is higher than the suitable level for 1st mixer's terminal, it generates harmonics distortion and spurious. MSA338/MSA358 is designed so that the input signal level of 1st mixer is determined to proper level by the reference level.

9.5 Setting the offset level

1. **F5** \rightarrow **(b)** to set the offset of reference level.

When amplifier and attenuator are used externally, display level can be matched by offset.

The setting range is from -50.0 to 50.0dB (0.1dB step).

Offset is calculated to the reference level, and it is displayed.

* When offset is set, it is displayed on LEVEL display area as "OFS".

Furthermore, the value of a marker point is displayed reflecting the calculated offset.

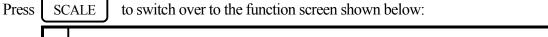
* Offset of dBµV, dBmV, dBV, W, etc. are changed automatically.

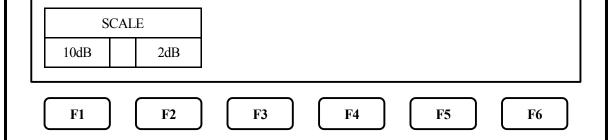
9.6 Setting the input impedance compensation

50 Ω 🔶 75 Ω

1. F6 \rightarrow (

to select the input impedance compensation.


When coaxial adaptor MA301 ($50 \Omega/75 \Omega$ impedance converter) is attached, and choose " 75Ω ", then offset is calculated to the reference level, and it changes for the measured value as 75Ω system, and display it.


* When "75 Ω " is selected, "75 Ω " is displayed in the LEVEL area on the screen. When "75 Ω " is selected, the offset is set to 5.7dB (insertion loss of MA301). Moreover, can set offset.

Moreover, while setting the unit of the marker point to [W, V, V/m] etc, it changes from dBm correctly.

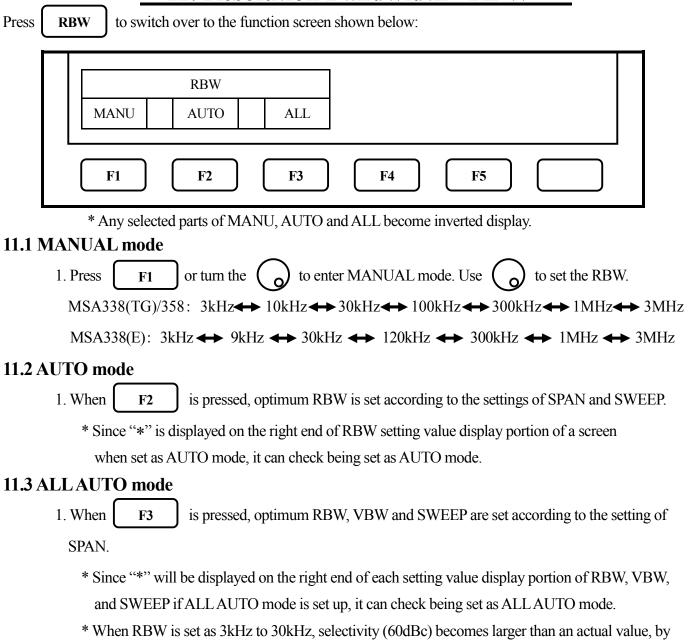
* When you set it as "75 Ω ", please be sure to attach coaxial adapter MA301 (50 Ω /75 Ω impedance converter).

10. Display Scale <SCALE>

10.1 Setting with the keys ([F1], [F2])

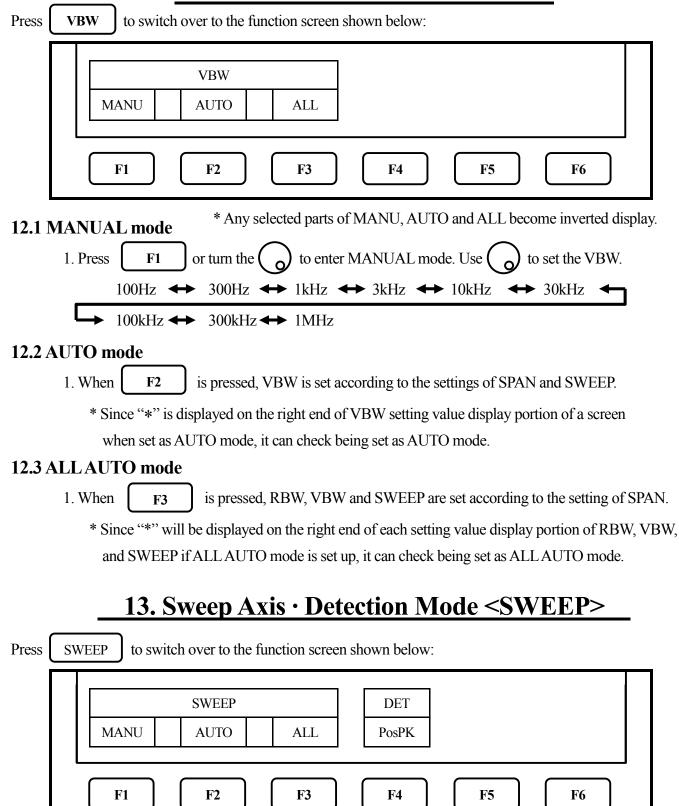
1. Press **F1** to set the 10dB/div display scale.

2. Press **F2** to set the 2dB/div display scale.


10.2 Setting with the encoder

1. Turn

to switch between the 10dB/div and 2dB/div display scale.


10dB ↔ 2dB

* In 2dB/div, display level may not become smaller than fixed level, by frequency compensation.

11. Resolution Bandwidth < RBW>

influence of SSB phase noise.

12. Video Bandwidth <VBW>

* Any selected parts of MANU, AUTO and ALL become inverted display. When [F4] is pressed, the part of DET become inverted display. For MSA338TG [F6] refer to "22. Tracking Generator Mode"

13.1 MANUAL mode
1. Press $\mathbf{F1}$ or turn the \mathbf{O} to enter MANUAL mode. Use \mathbf{O} to set the SWEEP.
$10ms \iff 30ms \iff 0.1s \iff 0.3s \iff 1s \iff 3s \iff 10s \iff 30s$
* MSA338 (E/TG): Can't set 10ms at the FULLSPAN.
* MSA358: 30ms to 30s and AUTO @Span 0 to 5GHz , Full span 13.2 AUTO mode
13.2 AUTO mode
1. When F2 is pressed, SWEEP is set according to the settings of SPAN and RBW.
* Since "*" is displayed on the right end of SWEEP setting value display portion of a screen
when set as AUTO mode, it can check being set as AUTO mode.
13.3 ALL AUTO mode
1. When F3 is pressed, RBW, VBW and SWEEP are set according to the setting of SPAN.
* Since "*" will be displayed on the right end of each setting value display portion of RBW, VBW,
and SWEEP if ALL AUTO mode is set up, it can check being set as ALL AUTO mode.
13.4 Setting the Detection mode (For MSA338E, refer to "20. EMI test")
1. Pressing F4 allows you to change the method to capture the trace.
\rightarrow PosPK \rightarrow SMPL \rightarrow NegPK \rightarrow
• PosPK (Positive Peak) : Traces the maximum value of the sample points.
• SMPL (Sample) : Traces the momentary value of the sample points.
\cdot NegPK (Negative Peak) : Traces the minimum value of the sample points.
14. AUTO Tuning <auto tune=""></auto>

When **AUTO TUNE** is pressed, center frequency is set at the spectrum of the maximum level in

the 3.3GHz(MSA338(E/TG))/8.5GHz(MSA358) band, and in addition, optimum reference level, RBW,

VBW and SWEEP are set according to the setting of SPAN.

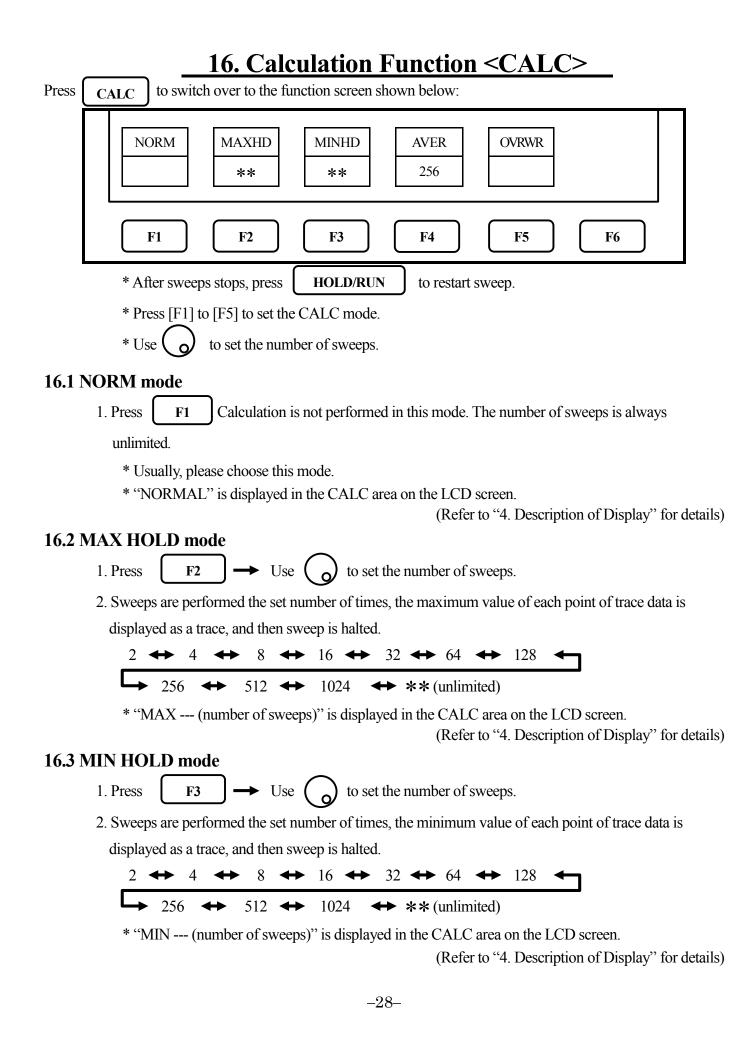
* The AUTO tuning does not operate normally, at the time of the following 4 conditions.

1) ZERO SPAN

2) FULL SPAN

3) Signal level is -40dBm or lower

4) Signal frequency is 50MHz or lower


15. Hold/Run <HOLD/RUN>

Press

HOLD/RUN

to switch to between sweep halt and continuous sweep.

* This operates only with the key press, with no function indication.

16.4 AVERAGE mode

1. Press **F4** \rightarrow Use **()** to set the number of sweeps.

2. Sweeps are performed the set number of times, average value of each point of trace data is displayed as a trace, and then sweep is halted.

 $2 \iff 4 \iff 8 \iff 16 \iff 32 \iff 64 \iff 128 \iff 256$

* "AVG --- (number of sweeps)" is displayed in the CALC area on the LCD screen.

(Refer to "4. Description of Display" for details)

16.5 OVER WRITE mode

1. Press **F5** to enter into the OVER WRITE mode, where traces are written one over another.

The number of sweeps is unlimited.

* "OVER WR" is displayed in the CALC area on the LCD screen.

(Refer to "4. Description of Display" for details)

* Only the last one trace is saved.

16.6 SPURIOUS FREE mode (MSA358 only)

1. By pushing **F6** it will become the SPURIOUS FREE mode which simply deletes

spurious characteristic at band 1+.

* "SPR." is displayed beside CALC in liquid crystal screen CALC area.

(Refer to "4. Description of Display" for details)

* The SPURIOUS characteristic at band 1+ is a spurious calculated by the following formula for a input signal over 6.76GHz, in case of measurement at band 1+.

(Refer to "8. Frequency Span" for details)

Spurious characteristic at band 1+[GHz] = (Input signal [GHz] + 5.64GHz)/2

* SPURIOUS FREE mode

- 1. SPURIOUS FREE mode is the mode which simply deletes SPURIOUS characteristic at band 1+.
- 2. SPURIOUS FREE mode has a special effect in measurement of a regular wave.
- 3. If SPURIOUS FREE mode is used in measurement of a signal with level change or frequency change, the phenomenon will happen that an amplitude level falls.

* How to discriminate SPURIOUS characteristic at band 1+ in manual operation

The procedure for discriminating SPURIOUS characteristic at band 1+ is as follows.

- 1. Set to SPAN = 10MHz.
- 2. Set the frequency of SPECTRUM to be discriminated to the center frequency of MSA358.

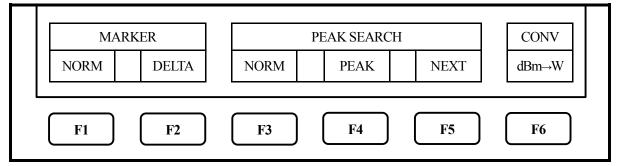
- 3. Verify that SPECTRUM to be discriminated is at the center of a screen, and change the main frequency by +1MHz.
- 4. Judge by measured trace data.
 - The same frequency as the frequency set up first. \rightarrow Measurement data.
- 2MHz over Main frequency changed by +1MHz \rightarrow Spurious characteristic at band 1+

Example: Discriminate SPECTRUM displayed on 7GHz.

- 1. Set MSA358 to SPAN = 10MHz and main frequency = 7 GHz.
- 2. Verify that SPECTRUM is at 7 GHz.
- 3. Set MSA358 to Main frequency = 7.001 GHz.
- 4. Measure spectrum and distinguish as follows.

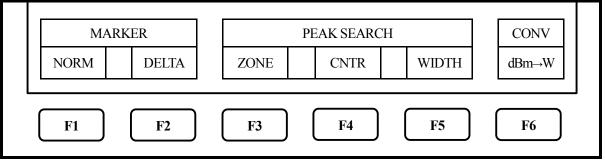
Spectrum is at 7.003 GHz. → SPURIOUS characteristic at band 1+.

17. Marker · Peak Search <MKR>


Press

MKR

to switch over to the function screen shown below:


 \cdot The display when a NORM marker is selected.

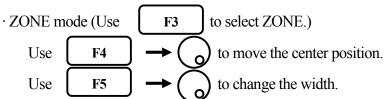
The marker is manually moved at NORM mode. Peak search function, NEXT peak search function is available.

 \cdot The display when a ZONE marker is selected.

The marker moves to the biggest peak position automatically at ZONE mode, inside specified zone.

17.1 Moving the marker

Use **F2** to put DELTA REF at the current marker position.


17.2 Setting the peak search < PEAK SEARCH>

- NORM mode (Use **F3** to select NORM.)
 - Use **F4** to move the marker to the maximum peak position.
 - Use **F5** to move the marker successively from higher to lower peak positions other than the

maximum peak. (The marker moves to 10 peaks.)

* When you move the marker to the 10th peak or moving the marker, the NEXT peak search

function stops and the function display disappears.

17.3 Changing the unit of marker point

Press $\mathbf{F6}$ to change the unit of marker point.

When unit of reference level is dBm, the unit is changed from [dBm] to [W].

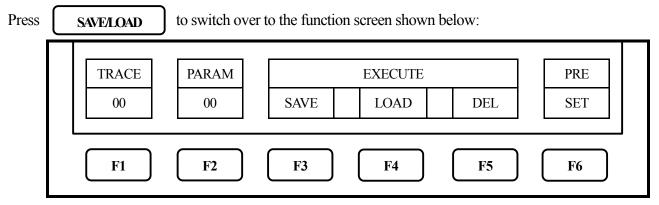
When unit of reference level is $dB\mu V$, the unit is changed from $[dB\mu V, dBm V, dBV]$ to [V].

When unit of reference level is $dB\mu V/m$, the unit is changed from $[dB\mu V/m]$ to [V/m].

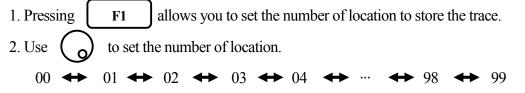
When unit of reference level is $dB\mu A/m$, the unit is changed from $[dB\mu A/m]$ to [A/m].

Moreover, according to each unit, it is displayed as follows.

$$[W] \longrightarrow [W, mW, \mu W, nW, pW, fW]$$


 $[V] \quad \longrightarrow \quad [V, mV, \mu V, nV]$

 $[V/m] \rightarrow [V/m, mV/m, \mu V/m, nV/m]$


 $[A/m] \longrightarrow [A/m, mA/m, \mu A/m, nA/m]$

18. Save/Load <SAVE/LOAD>

18.1 Save/Load (MSA338(E/TG))

18.1.1 Setting the location to store the trace

* The part of TRACE become inverted display after it is selected.

18.1.2 Setting the location to store the parameter

Pressing F2 allows you to set the number of location to store the parameter.
 Use O to set the number of location.
 00 ↔ 01 ↔ 02 ↔ 03 ↔ 04 ↔ … ↔ 98 ↔ 99

* The part of PARAM become inverted display after it is selected.

18.1.3 Saving the data

1. Press **F3** to save

to save the data at the set number.

* This saves the trace when TRACE is selected, or the setting parameters when PARAM is selected.

* "*" is displayed on the right end of the number of location place at which data is saved.

* It can be overwritten, too

F4

18.1.4 Loading the data

1. Press

to read out the data at the set number.

* This reads out the trace when TRACE is selected. The setting parameter of the loaded trace is displayed in the loaded trace information display area.

(Refer to "4. Description of Display" for details)

* This reads out the setting parameters when PARAM is selected.

* When you load a trace, the current trace disappears, the HOLD state is set, and the loaded trace is displayed. For the loaded trace, you can use the marker, but cannot use a measuring function. When you press the HOLD/RUN key, the loaded and the current traces are displayed overlapping each other.

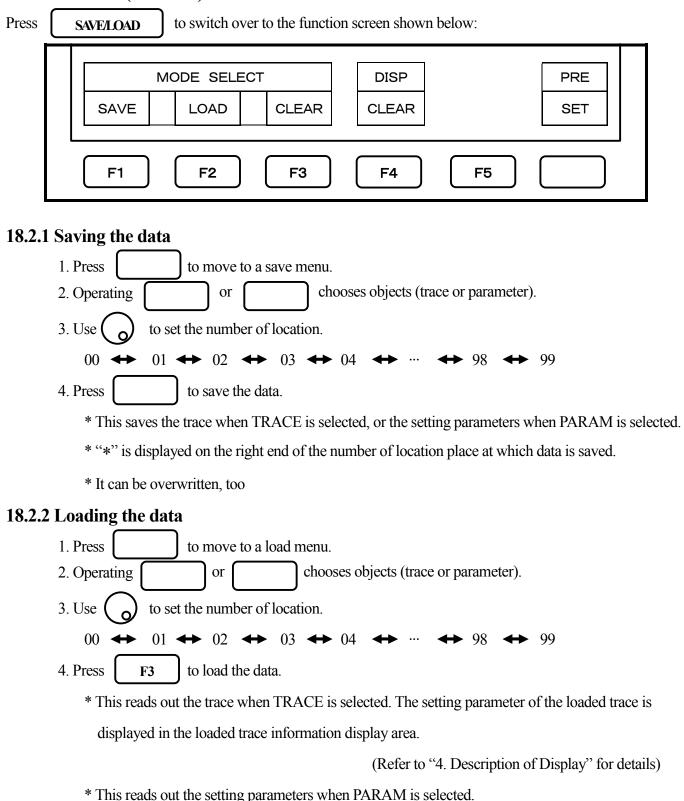
* "*" is displayed on the right end of the number of location place at which data is saved.

* When you search the trace or setting parameters to be read out, repeat

F4 \leftrightarrow F4 \cdots , and load the trace or setting parameters in turn.

18.1.5 Clearing the loaded trace

1. Press **F5** to clear the loaded trace that has been displayed.

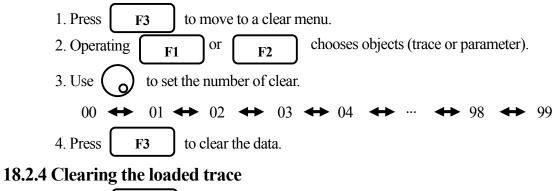

18.1.6 Presetting (Initialization)

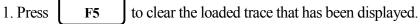
1. Press F6 to preset the setting parameters as the Initialization shown below:

"Initialization"

Items	Parameter
Center frequency	1GHz
Frequency span	20MHz
Reference level	10dBm
Offset	0.0dB
Impedance	50Ω
Sweep time	0.3s
Detection mode	Positive peak mode
RBW	100kHz
VBW	10kHz
Display scale	10dB/div

18.2 Save/Load (MSA358)




* When you load a trace, the current trace disappears, the HOLD state is set, and the loaded trace is displayed. For the loaded trace, you can use the marker, but cannot use a measuring function.

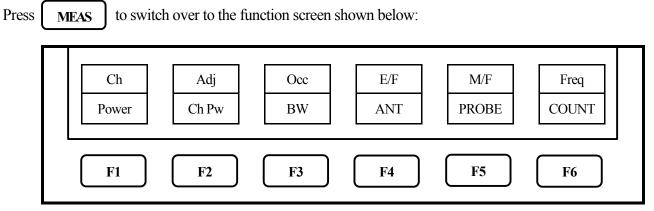
When you press the HOLD/RUN key, the loaded and the current traces are displayed overlapping each other.

* "*" is displayed on the right end of the number of location place at which data is saved.

18.2.3 Clearing the data

18.2.5 Presetting (Initialization)

F6


1. Press

to preset the setting parameters as the Initialization shown below:

"Initialization"

Items	Parameter
Center frequency	1GHz
Frequency span	20MHz
Reference level	10dBm
Offset	0.0dB
Impedance	50Ω
Sweep time	0.3s
Detection mode	Positive peak mode
RBW	100kHz
VBW	10Hz
Display scale	10dB/div

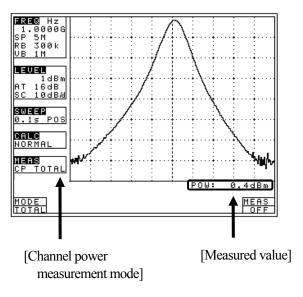
19. Measuring Function<MEAS>

Select the measuring function:

F1	Ch Power ······ Channel power measurement
F2	Adj Ch Pw ······ Adjacent channel leakage power measurement
F3	Occ BW ······ Occupied frequency bandwidth measurement
F4	E/FANT ····· Electric field strength measurement
F5	M/F PROBE ······ Magnetic field strength measurement
F6	Freq COUNT ······ Frequency counter (factory option)
* 0	

- * Once you select the measuring function, pressing <u>MEAS</u> next time will directly bring up the function screen for the function you selected the last time. If you want to stop the measuring function, or if you want to select another measuring function, press [F6] (MEAS OFF). This stops the measuring function and switches to the above screen, which allows you to select the measuring function.
- * The measuring function is stops, when push MKR while these 4 functions (Channel power, Adjacent channel leakage power, Occupied frequency bandwidth, Frequency counter) are selected.
 Because each 4 functions and marker operation cannot be used simultaneously. Similarly, the function of the marker stops, when the functions of these 4 measurements are selected while using the marker.
- * The unit displays data in 251 horizontal dots, but it internally captures the trace and calculates the measured value (Channel power measurement, Adjacent channel leakage power measurement and Occupied frequency bandwidth measurement) in 1004 dots.

19.1 Channel power measurement <Ch Power>

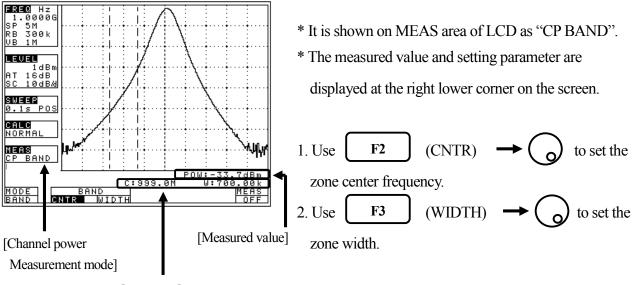

F1

Measures the sum of the power in the zone specified. Two modes, TOTAL and BAND, are available.

• TOTAL mode [Use F1 (MODE) to select TOTAL.]

Measure the sum of the power in the zone specified by the center frequency and frequency span (whole

range of the screen).

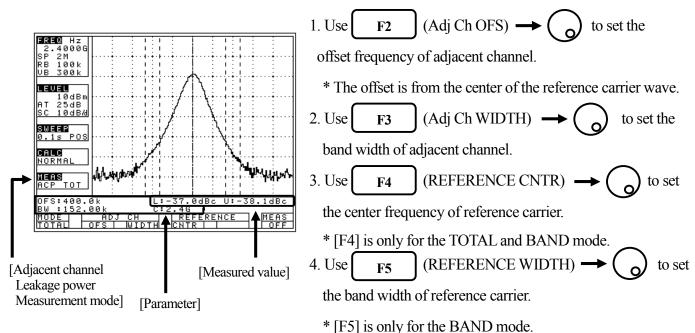


* It is shown on MEAS area of LCD as "CP TOTAL"

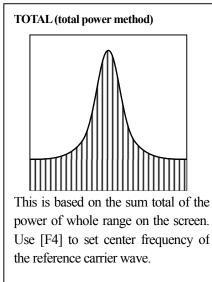
* The measured value is displayed at the right lower corner on the screen.

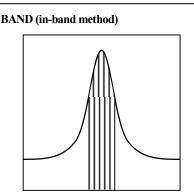
• BAND mode [Use **F1** (MODE) to select BAND.]

Measure the sum of the power in the zone specified by the zone center frequency and zone width.

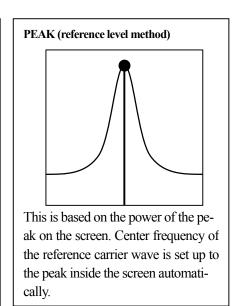

[Parameter]

19.2 Adjacent channel leakage power measurement <Adj Ch Pw>


F2

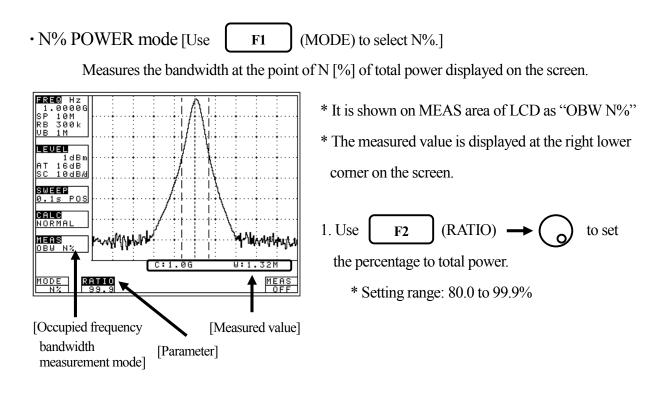

Measures the adjacent channel leakage power as the ratio of the power in the range specified by the offset frequency against the reference frequency (reference carrier frequency) and the bandwidth, to the carrier wave power. Two channels of adjacent waves on the upper and lower sides of the same offset frequency are measured. In addition, you can select from three modes, TOTAL (total power method), REF BAND (in-band method) and PEAK (reference level method), according to the classification of definitions of carrier wave.

- Mode selection and measurement [Use F1 (MODE) to select a mode: TOTAL, BAND or PEAK.]
 - * It is each shown on MEAS area of LCD as "ACP TOT", "ACP BAND" or "ACP PK".
 - * The measured value and setting parameter are displayed at the right lower corner on the screen.



• Definition of the reference carrier for each mode

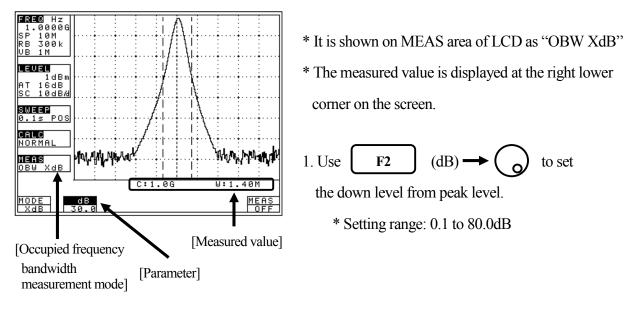
This is based on the sum total of the power within the set bandwidth. Use [F4] to set center frequency of the reference carrier wave.



19.3 Occupied frequency bandwidth measurement <Occ BW>

F3

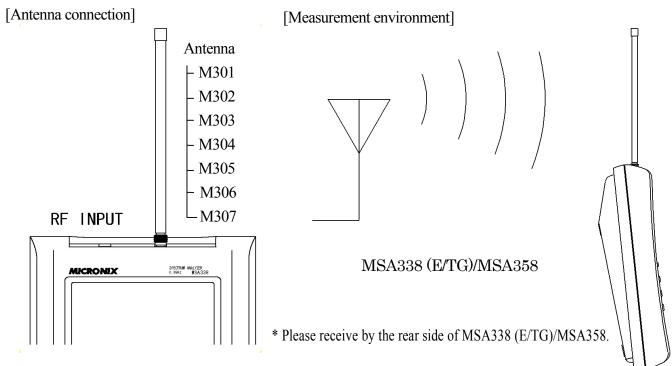
to set


Measures the bandwidth at the point of N [%] of total power (N% POWER) or the bandwidth at the point X [dB] down from the peak level (XdB DOWN). Two modes are available.

• XdB DOWN mode [Use F1

(MODE) to select XdB.]

Measures the bandwidth at the point X [dB] down from the peak level,


19.4 Electric field strength measurement <E/F ANT>

F4

Measures electric field strength by connecting an optional antenna.

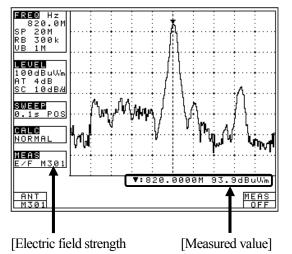
Allows using an antenna other than options by creating and inputting the original compensation table.

(Refer to "25.6 Writing of original compensation data" for how to create and write)

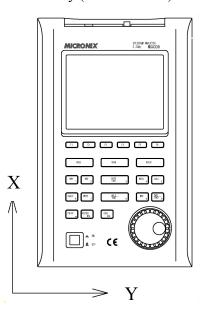
"Specifications of the antenna (antenna gain and VSWR are specified at a center of frequency range)."

Items	M301	M302	M303	M304	M305	M306	M307
Туре	Sleeve	Sleeve	Sleeve	Sleeve	$1/4 \lambda$ whip	Sleeve	$1/4 \lambda$ whip
Frequency range	0.8 to 1.0GHz	1.25 to 1.65GHz	1.70 to 2.20GHz	2.25 to 2.65GHz	300 to 500 MHz	4.7 to 6.2 GHz	470 to 770 MHz
Antenna gain	+1dBi or higher	+1dBi or higher	+1dBi or higher	+1dBi or higher	+1dBi or higher	+1dBi or higher	+1dBi or higher
VSWR	1.5 or lower	1.5 or lower	1.5 or lower	1.5 or lower	1.5 or lower	1.5 or lower	1.5 or lower
Dimensions	7.5φ×250 mm	7.5φ×250 mm	7.5φ×180 mm	7.5φ×180 mm	8.0φ×195 mm	7.5φ×120 mm	8.0φ×123 mm
Weight	approx.20g	approx.20g	approx. 15g	approx.15g	approx.30g	approx.10g	approx.15g
Reference level setting range (except for the minimum value in screen shift)	93 to 143dBμV/ m	96 to 146dΒμV/ m	98 to 148dΒμV/ m	100 to 150dBμV/ m	87 to 137dBμV/ m	109 to 159dBμV/ m	91 to 141dBuV/ m

* Measured value varies depending on how to have MSA338(E/TG)/358 main unit. Moreover, if the person who has is different, measured value will vary. Because M305/307 is $1/4 \lambda$ whip antenna. Therefore, in the measurement used an antenna M305/307, measurement errors occurs. The error value is several dB or 10dB or more. In order to lessen the error value, use it, separating from the body as much as possible so that there is no influence of human body. Mode selection and measurement


- Use **F1** (ANT) to select an antenna, M301, M302, M303, M304, M305, M306, M307or USER. As soon as the antenna is entered, the measurement is taken.
 - * It is each shown on MEAS area of LCD as "E/F M301", "E/F M302", "E/F M303", "E/F M304",

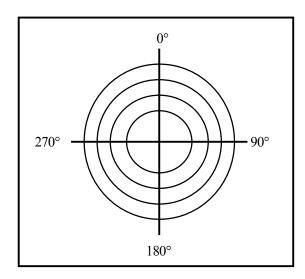
"E/F M305", "E/F M306", "E/F M307" or "E/F USER".


* "USER" is an original compensation table the user crates.

(Refer to "25.3 Command description" for details.)

* Trace may exceed from a screen by antenna gain compensation.

• Antenna directivity (reference data)

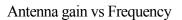


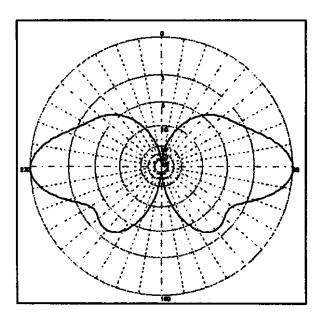
Unit of amplitude axis changes to $[dB\mu V/m]$

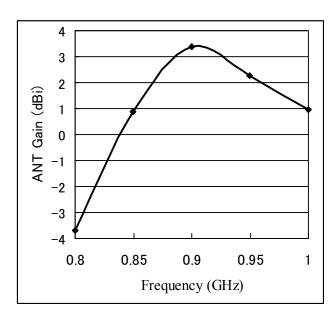
 * Optimum center frequency and frequency span are set according to the antenna.
 In addition, a trace is not displayed for frequencies outside those supported by the antenna.

Example) case of M301

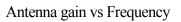
Center frequency: 900MHz Frequency span: 200MHz

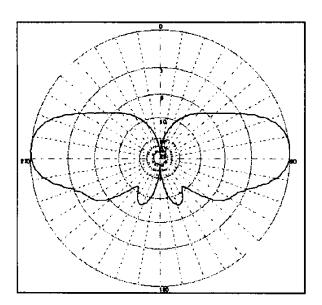


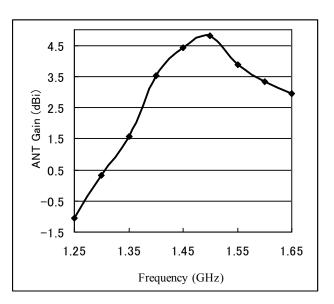

E plane: X-Y axis (X direction=0°)


- * All the data are those when the antenna is connected to the RF input with no obstacles around.
- * However, data of M305/307 is reference data of the conditions in which people have MSA338(E/TG) /MSA358 attached M305/307.

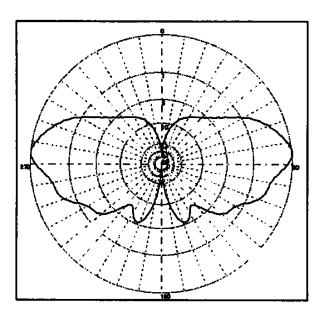
So, the directivity changes in practice, because, for example, the unit is carried by people.

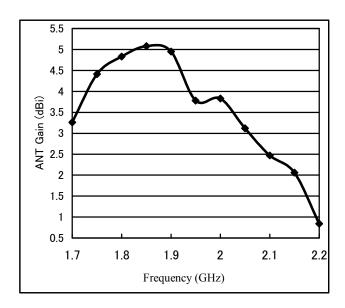

M301 (900MHz, E plane)

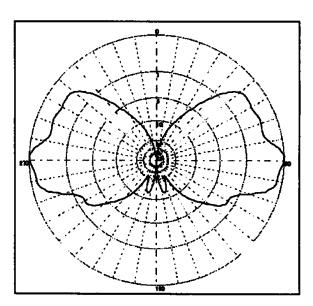




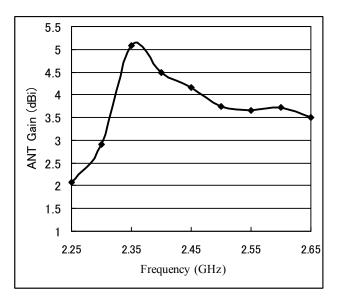
M302 (1.5GHz, E plane)

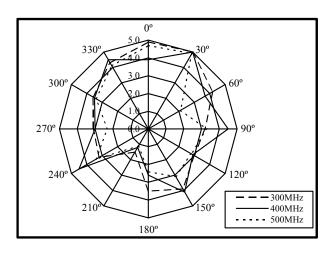




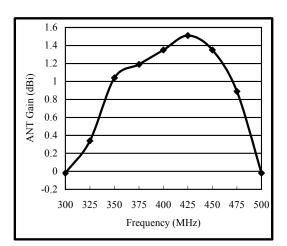

M303 (2.0GHz, E plane)

Antenna gain vs Frequency

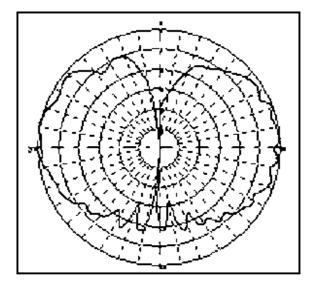


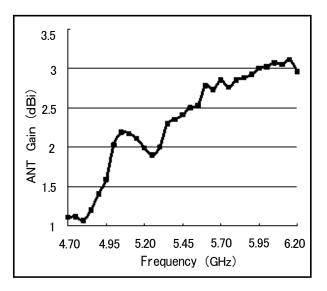

M304 (2.4GHz, E plane)

Antenna gain vs Frequency

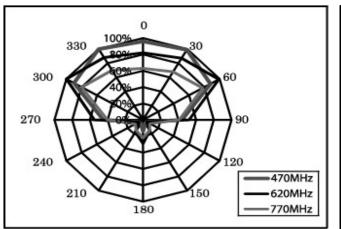


M305 (horizontal plane)

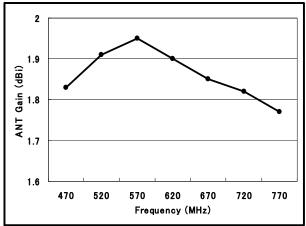



M306 (5.4GHz, E plane)

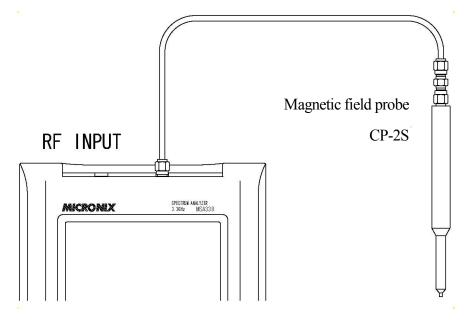
Antenna gain vs Frequency



Antenna gain vs Frequency



M307 (horizontal plane)


Antenna gain vs Frequency

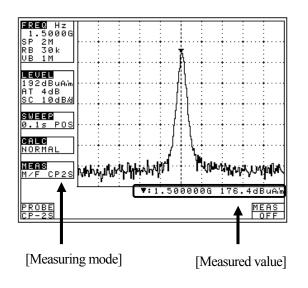
19.5 Magnetic field strength measurement <M/F PROBE>

F5

Measures the magnetic field strength using the optional magnetic field probe CP-2S.

"Specifications of magnetic field probe CP-2S"

Items	Specifications
Frequency range	10MHz to 3GHz
Space resolution (-6dB)	approx.0.25 mm (Depending on objects)
Dimensions	Outside: 12φ×135mm probe tip: 2mm(W)×1mm(T)
Connector	SMA(P)
Reference level setting range (maximum)	160 to 203dBµA/m
Reference level setting range (except for the minimum value in screen shift)	110 to 153dBμA/m
Measurement error	approx.±1dB (Probe simple substance)


(Refer to the operating manual for CP-2S for details.)

The tip of the optional magnetic field probe CP-2S is made of glass-ceramic board. Take care when handling the probe even though the strength of the glass-ceramic board is sufficiently ensured under normal operation. Mode selection and measurement

Use **F1** (PROBE) to select a probe, CP-2S or USER. As soon as the probe is entered, the measurement is taken.

* It is each shown on MEAS area of LCD as "M/F CP2S" or "M/F USER".

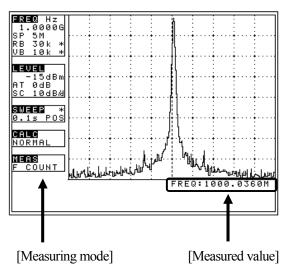
* "USER" is an original calibration table the user creates.

(Refer to "25.3 Command description" for details.)

Unit of amplitude axis are changing to [dBµA/m]

* A trace is not displayed for frequencies outside those supported by the probe.

19.6 Frequency counter < Freq COUNT> (factory option)


Measure the frequency that is displayed on the spectrum of center on screen, at high accuracy. Set frequency roughly, as center frequency. And adjust the center frequency and the reference level so that the level of the center on screen becomes as high as possible.

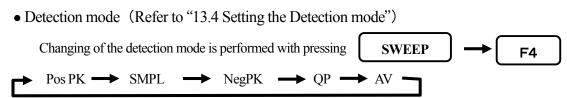
"Specifications"

Items	Specifications	
Measurement frequency range	1MHz to 3.3GHz(MSA338(E/TG))/1MHz to 8.5GHz(MSA358)	
Measured level	+10 to -70dBm (CF: 1MHz to 2GHz, RBW:100kHz) +10 to -60dBm (CF: 2GHz to 8.5GHz, RBW: 100kHz)	
Measured resolution	100Hz	
Display digits	8 digits max	
Reference X'tal	Accuracy: ±2ppm (23°C), Temp. characteristics: ±5ppm (0 to 40°C)	

- * Setting range of sweep time is 0.1s or more.
- * It does not correspond to FULL SPAN.

Measurement

1. Press $\mathbf{F6}$ to enter frequency counter mode.


* It is shown on MEAS area of LCD as "F COUNT".

Since the frequency of spectrum of a screen center is measured, please set up spectrum of frequency to measure roughly to become the center of a screen. The measured value is displayed on the lower right of a screen.

- * When the level of spectrum is small and cannot measure, it is displayed as "Non signal".
- * If frequency counter (factory option) is not mounting, it is always displayed as "Invalid for F/C".

20. EMI Test (MSA338E)

20.1 Additional function for EMI test

In MSA338E, the QP detection and the AV detection are added for the EMI test.

- PosPK (Positive Peak) : Trace the maximum value of the sample points.
- SMPL (Sample) : Trace the momentary value of the sample points.
- Neg PK (Negative Peak) : Trace the minimum value of the sample points.
- · QP (Quasi Peak) : Trace the quasi peak value of the sample points.
- AV (Average) : Trace the average value of the sample points.

As for the QP detection, the following characteristics are chosen from the setting of RBW. (based on CISPR16)

RBW	charging	dis-charging	meter
	time constant	time constant	time constant
9kHz	1ms	160ms	160ms
120kHz	1ms	550ms	100ms

• Presetting (Initialization) (Refer to "18. Save/Load")

In MSA338E, the default settings of the radiated disturbance measurement and the conducted disturbance measurement are added to the preset.

Menu is displayed with pressing

F2

 $SAVELOAD \longrightarrow F6$

Press F1

Press

Press

[NORM] to preset the setting parameters as the normal initialization.

[EMI-C] to preset the setting parameters for the conducted disturbance measurement.

F3 [EMI-R] to preset the setting parameters for the radiated disturbance measurement.

In the radiated disturbance measurement, **[USER]** is selected as an antenna.

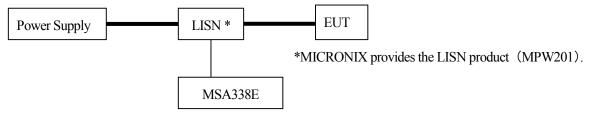
It is necessary to input the antenna calibration data beforehand.

20.2 EMI test

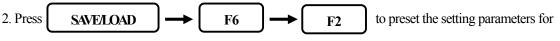
Limits of disturbance use QP or AV detection value.

It takes much time to measure the QP or AV detection values.

To save time, measure all band using the peak detection and then measure the QP or AV values of the


frequency where the peak detection values exceed the QP or AV limits.

•Conducted disturbance at mains ports measurement


Conduction disturbance voltage induced at an AC power terminal of Equipment Under Test (EUT).

LISN* (Line Impedance Stabilization Network) device is needed. The connection is shown in the figure below.

Please refer to the manual of LISN for details of the connection and notes.

1. Turn on the MSA338E after connection.

the conducted disturbance measurement. The settings are as follows.

Center Frequency	:15MHz
Frequency span	:50MHz
RBW:	:9kHz
VBW	:1MHz
Sweep time	:3sec
Detection mode	:Positive peak mode

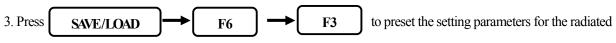
3. Confirm that the connections and operations are correct with supplying the power to the EUT and measuring.


4. Press **CALC** \rightarrow **F2** to set the MAX-HOLD count.

Set the count that can catch impulse disturbance, such as "256". It depends on impulse disturbance cycle.

- 5. Search the frequency where the disturbance exceeds the AV or QP limits using the Marker-Peak-Search function...
- 6. Set the CENTER-FREQUENCY to the near frequency where the disturbance exceeds the limits,
 - and set the SPAN to 2MHz and set the SWEEP to 0.1sec. And measure the disturbance frequency accurately.
- Measure the disturbance with QP or AV detection, SPAN200KHz and SWEEP10sec at the frequency selected in item-6.

•Radiated disturbance measurement


The electric field strength of radio disturbance from the EUT.

1. Set the antenna calibration data beforehand if unsetting.

Refer to "24.5 Writing original compensation data" for the setting method.

2. Turn on the MSA338E after connection.

disturbance measurement. The settings are as follows.

Center Frequency	:515MHz
Frequency span	:1GHz
RBW:	:120kHz
VBW	:1MHz
Sweep time	:0.3sec
Detection mode	:Positive peak mode

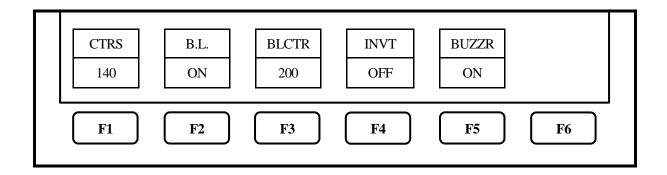
4. Confirm that the connections and operations are correct with supplying the power to the EUT and measuring.

5. Press CALC \rightarrow F2 to set the MAX-HOLD count.

Set the count that can catch impulse disturbance, such as "256". It depends on impulse disturbance cycle.

- 6. Search the frequency where the disturbance exceeds the QP limits using the Marker-Peak-Search function.
- 7. Set the CENTER-FREQUENCY to the near frequency where the disturbance exceeds the limits,

and set the SPAN to 50MHz and set the SWEEP to 30msec. And measure the disturbance frequency accurately.


8. Measure the disturbance with QP detection, SPAN1MHz and SWEEP30sec at the frequency selected in item-7.

	Frequency	Quasi Peak	Average	
CISPR22 class A Limits of conducted disturbance at mains ports	0.15MHz ~ 0.50MHz 0.50MHz ~ 30MHz	79dBuV 73dBuV	66dBuV 60dBuV	
CISPR22 class B Limits of conducted disturbance at mains ports	0.15MHz ~ 0.50MHz 0.50MHz ~ 5MHz 5MHz ~ 30MHz	66 ~ 56dBuV 56dBuV 60dBuV	56~46dBuV 46dBuV 50dBuV	Decreasing linearly with the logarithm of the frequency
CISPR22 class A Limits of radiated disturbance	30MHz ~ 230MHz 230MHz ~ 1000MHz	40dBuV/m 47dBuV/m		Measurement distance 10 m
CISPR22 class B Limits of radiated disturbance	30MHz ~ 230MHz 230MHz ~ 1000MHz	30dBuV/m 37dBuV/m		Measurement distance 10 m
VCCI class A Limits of conducted disturbance at mains ports	0.15MHz ~ 0.50MHz 0.50MHz ~ 30MHz	79dBuV 73dBuV	66dBuV 60dBuV	
VCCI class B Limits of conducted disturbance at mains ports	0.15MHz ~ 0.50MHz 0.50MHz ~ 5MHz 5MHz ~ 30MHz	66~56dBuV 56dBuV 60dBuV	56~46dBuV 46dBuV 50dBuV	Decreasing linearly with the logarithm of the frequency.
VCCI class A Limits of radiated disturbance	30MHz ~ 230MHz 230MHz ~ 1000MHz	40dBuV/m 47dBuV/m		Measurement distance 10 m
VCCI class B Limits of radiated disturbance	30MHz ~ 230MHz 230MHz ~ 1000MHz	30dBuV/m 37dBuV/m		Measurement distance 10 m
FCC part15 subpartB class B Limits of conducted disturbance at mains ports	0.15MHz ~ 0.50MHz 0.50MHz ~ 30MHz	79dBuV 73dBuV	66dBuV 60dBuV	
FCC part15 subpartB class A Limits of conducted disturbance at mains ports	0.15MHz ~ 0.50MHz 0.50MHz ~ 5MHz 5MHz ~ 30MHz	66~56dBuV 56dBuV 60dBuV	56~46dBuV 46dBuV 50dBuV	Decreasing linearly with the logarithm of the frequency.
FCC part15 subpartB class B Limits of radiated disturbance	30MHz ~ 88MHz 88MHz ~ 216MHz 216MHz ~ 960MHz 960MHz ~	40dBuV/m 43.5dBuV/m 46dBuV/m 54dBuV/m		Measurement distance 3 m
FCC part15 subpartB class A Limits of radiated disturbance	30MHz ~ 88MHz 88MHz ~ 216MHz 216MHz ~ 960MHz 960MHz ~	39dBuV/m 43.5dBuV/m 46.4dBuV/m 49.5dBuV/m		Measurement distance 10 m

(Attention) This table is a background information. Micronix is not liable to you for any damages due to the mistake of the content of the description.

21. Screen Control <DSPL>

Press **DSPL** to switch over to the function screen shown below:

21.1 Adjusting the contrast (*1)

Use $F1 \rightarrow O$ to adjust the contrast.

(*1 There is a product to which contrast adjustment is not necessary to perform for component change.

In that case, this menu \boxed{CTRS} is not displayed.) 140

21.2 Switching ON and OFF the LCD backlight

F2

Each time

is pressed, the LCD backlight is alternately switched to ON or OFF.

21.3 Adjusting the brightness of the LCD backlight

21.4 Inverting the display

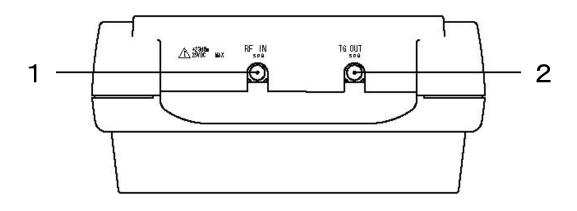
Press F4

to invert the screen display. Press

again to return it to the previous state.

21.5 Enabling or disabling the beep

Pressing **F5** allows you to disable the beep that sounds when you operate a key or the encoder. Press **F5** again to return it to the previous state.


F4

* If the voltage of a battery becomes low at the time of battery operation, it will be displayed on a screen as "Low Batt", and a buzzer will sound (it sounds, even if it is set up so that a buzzer may not sound), and a power supply will be shut off within several minutes.

22.1 Specification for T.G. function

Item	Limit
Frequency range	5MHz to 3.3GHz
Output Level	-10dBm±1dB@1GHz(Fixed value)
Output flatness	±1.5dB
Output impedance	50 Ω
Output VSWR	Less than 2.0
Output connector	SMA (J)

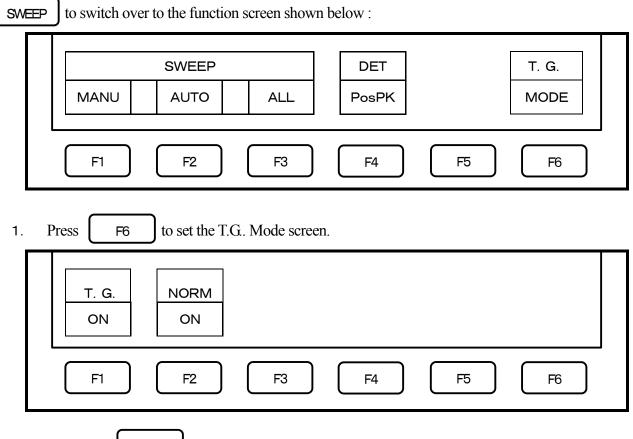
22.2 Description of I/O connector

1) Input connector

SMA(J) connector.

Input for an external signal.

Make sure that the total power of all signals at the analyzer input dose not exceeds +23dBm.


2) Output connector

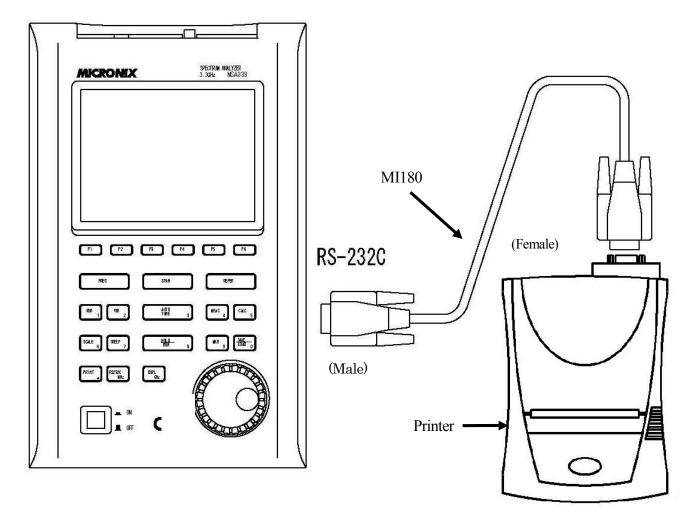
 $SMA\left(J\right) \text{connector.}$

It is an output terminal of Tracking Generator.

※ Please set to "TG: OFF" to prevent from the influence of the leak from the Tracking Generator in case of disuse of the T.G. function.

22.3 Switching ON and OFF the T.G. function

Each time F1 is pressed, the T.G. output is alternately switched to ON or OFF.
 If the T.G output is switched to ON, it will be displayed on a screen as "TG: ON".
 If the T.G. output is switched to OFF, it will be displayed on a screen as "TG: OFF".

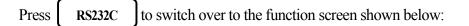

22.4 Normalizing of waveform

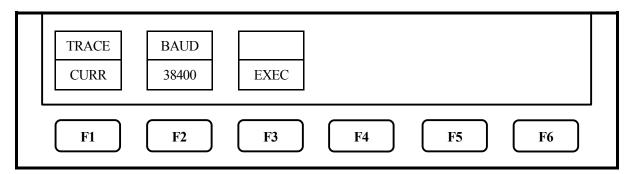
NORM ON : To become smooth at a dotted line position on the screen, the waveform of the input signal is normalized.

- 1. **SWEEP** to switch over to the function screen shown similar to the preceding clause.
- 2. Press F6 to set the T.G. Mode screen.
- 3. Each time F2 is pressed, the normalizing of waveform is alternately switched to ON or OFF. If the normalizing of waveform is switched to ON, it will be displayed on a screen as "NORM: ON".
- ※ If the following setting changes are done, the normalizing of waveform is automatically turned off.
 •The span is expanded. •The central frequency is changed over the range of the screen.
 (When SPAN is changed from FULL SPAN according to the setting of a center frequency, the setting is released.)
 •The magnetic field strength measurement or the frequency counter(factory optional) is selected.
 •The AUTO tuning is executed. •The presetting is executed. •The power supply is turned off.
- X It cannot be normalized that the shape of waves is not displayed at a proper position on the screen when the setting of the scale is 2dB.

23. Printing <PRINT> (optional)

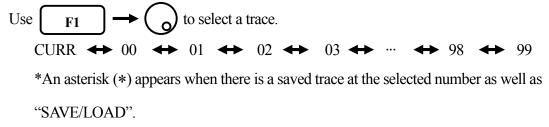
When using the optional printer, connect the RS-232C cable MI180 (optional) as shown in the figure below.




23.1 Hard copy of the screen

When you press the **PRINT** with the printer (optional) connected to the unit, it is set to the HOLD state and starts printing. It remains in the HOLD state after the printing is finished. It stops printing if you press the **PRINT** again during printing.

Since the printer operates with power supply from either the AC adapter or dry batteries, you can easily produce a hard copy of measured data even when outdoors where no AC power supply is available. When battery-powered, the printer operates for approximately 30 minutes (continuous use), allowing you to produce about 80 hard copies of the screen image.


24. Data Output <RS232C>

*Refer to "23. RS-232C" for "How to connect" and "RS-232C specifications"

24.1 Selecting the trace to transfer

* The trace currently displayed on the screen is transmitted when "CURR" is selected.

24.2 Selecting the communication speed (baud rate)

Use F2 \longrightarrow to select a baud rate. 2400 \leftrightarrow 4800 \leftrightarrow 9600 \leftrightarrow 19200 \leftrightarrow 38400

24.3 Transfer the data

Press **F3** to start the transfer.

The data are transmitted as ASCII cord character strings.

\cdot Contents of data	*"CR(0D[HEX])+LF(0A[HEX])" is added to the tail of every data.			
Character strings	Descrip	Example		
PARAM	This means that the data from the nex	PARAM		
CF **	Center frequency	Refer to 1	CF 2.5140G	
SP **	Frequency span	Refer to 2	SP 20M	
RF **	Reference level	Refer to 3	RF 10dBm	
ST ** ##	Sweep time and detection mode	ST 30ms SMP		
RB **	Resolution bandwidth	RB 300k		
VB **	Video bandwidth Refer to 6		VB 1M	
SC **	Display scale	(**=10dB/d or 2dB/d)	SC 10dB/d	
TRACE	This means that the data from the nex	TRACE		
**, **, …	These are trace data. Ten two-digit hexadecimal characters		24, 20, 1f, 1f, 1e, …	
	separated by commas make a line, and there are 26 lines (251data) of data in total. For Trace 1001 data transfer, there are 101 lines (1001			
	data) of data in total.	23		

1: Center frequency

MSA338(E/TG):CF **[**=0.0M, 0.1M to 999.9M (0.1step), 0.0001G to 3.3G(0.0001step)]MSA358:CF **[**=0.0M, 0.1M to 999.9M (0.1step), 0.0001G to 8.5G(0.0001step)]

2: Frequency span

MSA338(E/TG):

```
SP**[**=ZERO,200k,500k,1M,2M,5M,10M,20M,50M,100M,200M,500M,1G,2G,FULL]
MSA358: SP ** [**=ZERO, 200k, 500k, 1M, 2M, 5M, 10M, 20M, 50M, 100M, 200M, 500M, 1G, 2G, 5G, FULL]
```

3: Reference level

RF ** [**=-60 to 10dBm, 47 to 117dBµV, -13 to 57dBmV, -73 to -3dBv,

72 to 149dB μ V/m, 89 to 203dB μ A/m (all 1step)]

- 4: Sweep time and Detection mode
 - ST ** ## [**=10ms, 30ms, 0.1s, 0.3s, 1s, 3s, 10s, 30s] [##=POS, NEG, SMP]

5: Resolution bandwidth

MSA338(TG)/358: RB ** [**=3k, 10k, 30k, 100k, 300k, 1M, 3M] MSA338E: RB ** [**=3k, 9k, 30k, 120k, 300k, 1M, 3M]

6: Video bandwidth

VB ** [**=100, 300, 1k, 3k, 10k, 30k, 100k, 300k, 1M]

25. RS-232C Interface

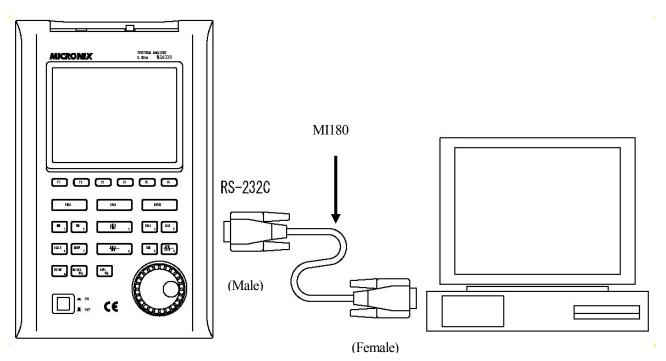
25.1 RS-232C specifications

•Transfer rate : 2400/4800/9600/19200/38400bps

•Date bit length : 8bit

•Stop bit : 1bit

·Parity check : none


25.2 How to connect

When using the RS-232C interface, connect the RS-232C cable MI180 (optional) as shown in the figure below.

* RS-232C interface cable MI180 specifications · · · Cable length: approx. 1.5m

Connector: D-sub 9pin male / D-sub 9pin female Wiring: straight

* Refer to "23. Data Output" about changing baud rate.

COM PORT (D-sub 9pin, male) *Use the conversion connector, in the case that is D-sub 25pin (male)

25.3 Command description

- * "CR(0D[HEX])+ LF(0A[HEX])" is added to the tail of every command. When you send a command from your PC, MSA338(E/TG)/MSA358 returns a response. Responses include "OK" + CR + LF, "ERR" + CR + LF and "(response to command)" + CR + LF.
- *By inputting "?" instead of "**" for each command, the current setting parameters are returned. Except for "…Request" command and command for inputting corrected data.

1) Set the center frequency

Command: FREQ******

(******=Refer to [25.4 Input the frequency])

2) Request the set marker

Command: FREQSETMKR

3) Set the span

MSA338(E/TG): Command: SPAN****

(***=ZERO, 200K, 500K, 1M, 2M, 5M, 10M, 20M, 50M, 100M,500M, 1G, 2G, FULL[unit: Hz]) MSA358: Command: SPAN****

(****=ZERO, 200K, 500K, 1M, 2M, 5M, 10M, 20M, 50M, 100M, 500M, 1G, 2G, 5G, FULL[unit: Hz])

current marker position.

4) Set the reference level

Command: REF*** (***=-60 to 10[1step, unit: dBm])

5) Set the reference unit

Command: UNIT*** (***=DBM, DBVU, DBMV, DBV)

6) Set the RBW

*For units other than dBm, use the conversion formulas in "9.3 Refference level setting range for each unit" to convert them into dBm before inputting the value.

*The center frequency is set according to the frequency of

Command	Unit
DBM	dBm
DBUV	dBµV
DBMV	dBmV
DBV	dBV

Command: RBW****

MSA338(TG)/358 (****=3K, 10K, 30K, 100K, 300K, 1M, 3M, AUTO, ALL[unit: Hz]) MSA338E (****=3K, 9K, 30K, 120K, 300K, 1M, 3M, AUTO, ALL[unit: Hz])

7) Set the VBW

Command: VBW****

(****=100, 300, 1K, 3K, 10K, 30K, 100K, 300K, 1M AUTO, ALL[unit: Hz])

8) Start/Stop the measuring function

Command: MEAS***

(***=CP, ACP, OBW,

EF, MF, FC, OFF)

9) Request the result of measuring function

Command: MEASRES

*Example of the return data

Command Measuring function CP Channel power measurement ACP Adjacent channel leakage power measurement OBW Occupied frequency bandwidth measurement EF Electric field strangth measurement MF Magnetic field strangth measurement FC Frequency counter (factory option) OFF OFF

Case of channel power measurement… POW: -25.5dBm

Case of adjacent channel power measurement... L: -44.7dBc U: -48.3dBc

Case of occupied bandwidth measurement ··· C: 1.45G W: 20.00k

Case of frequency counter ... FC:2400.0000M

* When the level of spectrum is small and cannot measure, it is returned as "Non signal".

* If frequency counter (factory option) is not mounting, it is returned as "Invalid for F/C".

10) Set the mode of channel power measurement

Command: CPMODE*****

(****=TOTAL. BAND)

	Command	Mode		
	TOTAL	Measure the power of whole range on the screen		
	BAND	Measure the power within zone set		
nannel power measurement				

11) Set the zone center frequency of channel power measurement

Command: CPCNTR******

(*****=Refer to [25.4 Input the frequency])

12) Set the zone width of channel power measurement

Command: CPWIDTH******

(*****=Refer to [25.4 Input the frequency])

13) Set the mode of adjacent channel power mesurement

Command: ACPMODE*****

(*****=TOTAL, REF, PEAK)

Command	Mode	
TOTAL	TOTAL(total power method)	
BAND	BAND(in-band method)	
PEAK	PEAK(reference level method)	

14) Set the band offset of adjacent channel power mesurement

Command: ACPOFS******

(*****=Refer to [25.4 Input the frequency])

15) Set the bandwidth of adjacent channel power mesurement

Command: ACPCHBW******

(******=Refer to [25.4 Input the frequency])

16) Set the reference band center frequency of adjacent channel power mesurement

Command: ACPREF******

(*****=Refer to [25.4 Input the frequency])

17) Set the reference bandwidth of adjacent channel power measurement

Command: ACPREFBW******

(*****=Refer to [25.4 Input the frequency])

18) Set the mode of occupied bandwidth measurement

Command: OBWMODE** (**=N%, DB)

Command	Mode	
N%	N% POWER mode	
DB	XdB DOWN mode	

19) Set the N% ratio of occupied bandwidth mesurement

Command: OBWRATIO***

(***=80.0 to 99.9[0.1step, unit: %])

20) Set the XdB down of occupied bandwidth mesurement

Command: OBWDB*** (***=0.1 to 40.0[0.1step, unit; dB])

21) Set the antenna of electric field strength measurement

Command:	EFANT****
----------	-----------

(****=M301, M302, M303, M304, M305, M306,

USER)

Antenna
Setting data for M301
Setting data for M302
Setting data for M303
Setting data for M304
Setting data for M305
Setting data for M306
Setting date for user's original antenna

22) Transfer the user-compensation data of electric field strength measurement

Command: EFUSER*****

Example of the compensation data: ****=2.25G:2.08DBI, ... 2.65G:3.5DBI

*If the compensation coefficient is -0.3dBi at 2.5GHz, the compensation data is "2.5G:-0.3DBI"

Set apart by "," between data and input from lower frequency. 10data are available.

23) Set the probe of magnetic field strength measurement

Command: MFPROBE****	Command	Probe
(****=CP2S, USER)	. CP2S	Setting data for CP-2S
	USER	Setting data for user's original probe

24) Transfer the user-compensation date for magnetic field strength measurement

Command: MFUSER*****

Example of the compensation data: ****=10M:86.7DB, 100M:69.2DB, ...3G:40dB

*If the compensation coefficient is 86.7dB at 10MHz, the compensation data is "10M:86.7DB"

Set apart by "," between data and input from lower frequency. 10data are available.

25) Start/Stop Calculation

Command: CALC*** (***=OFF, MAX, MIN, AVE, OVR)

26) Set the number of MAX HOLD

Command: MAXNO****

(****=2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 0) * Command: 0 = unlimited

27) Set the number of MIN HOLD

Command: MINNO****

(****=2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 0)

* Command: 0 = unlimited

28) Set the number of AVERAGE

Command: AVENO***

(***=2, 4, 8, 16, 32, 64, 128, 256)

29) Set the display scale of amplitude axis

Command: SCALE** (**=2, 10)

Command	Display scale	
2	2dB/div	
10	10dB/div	

CommandCalculationOFFOFFMAXMAX HOLDMINMIN HOLDAVEAVERAGEOVROVER WRITE

30) Set the sweep time

Command: SWEEP****

Command	Sweep time	Command	Sweep time
10M	10ms	38	3s
30M	30ms	10S	10s
0.1S	0.1s	30S	30s
0.3S	0.3s	AUTO	AUTO
1S	1s	ALL	ALLAUTO

31) Set the detection mode

Command: DET*** (***=POS, NEG, SMP)

32) Request the AUTOTUNE

Command: AUTO

*Returns the response after tuning.

33) Request the action

Command: HOLD/RUN

34) Request the marker information

Command: MKRRES

*Example of returned data: 1.42G -15dBm

35) Set the marker mode

Command: MKR***** (****=NORM, DELTA)

36) Set the marker position

Command: NORMMKR******

(*****=Refer to [24.4 Input the frequency])

37) Set the peak search mode

Command: PEAK**** (****=NORM, ZONE)

38) Request the peak search

Command: PKSEARCH**

(**=01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11)

39) Set the zone center frequency of peak search

Command: PKCNTR******

(******=Refer to [25.4 Input the frequency])

Command	Marker mode
NORM,	Normal marker
DELTA	Delta marker

	Comma	nd Peak search mode		
	NOR	I Normal peak search		
	ZON	Zone peak search		
Command		Position to where the marker moves	osit	
01		Position of the maximum peak on the screen		
02		Position of the 2nd highest peak on the screen		
11		Position of the 11th highest peak on the screen	Pos	

Command	Detection mode
POS	Positive peak mode
NEG	Negative peak mode
SMP	Sample mode

40) Set the zone width of peak search

Command: PKWIDTH******

(*****=Refer to [25.4 Input the frequency])

41) Set the unit of marker

Command: CONV***

(***=DBM, M, DBV, V, DBUVM, VM)

42) Request the transfer of hard copy

Command: PRT

*When transferring the returned data to optional printer, hard copy is performed.

43) Request to transfer trace

Command: SRS****

(****=CURR, 00 to 99)

44) Request to transfer 1001 date of trace

Command: SRSF Decimal data

SRSHF 4bit Hexadecimal data

45) Request the preset

Command: PRESET

46) Set the remote control

Command: REMOTE***

(***=ON, OFF)

* When remote control is ON, "REMOTE"

is displayed in the operating information

display area on the LCD screen.

(Refer to "4. Description Of Screen" for details)

47) Single sweep

Command: CAPT

* It sweeps only once and will be in a HOLD state.

48) Setting of the offset level

Command: OFFSET****

(****=-50.0 to 50.0 [0.1step, unit:dB])

49) Setting the input impedance

Command: IMP**

(**=50, 75)

* When selecting of "75 Ω ", please attach the coaxial connector (impedance converter) MA301 (optional) to an input connector.

Command	Unit of marker
DBM	dBm
W	W
DBV	dBV
V	V
DBUVM	dBµV/m
VM	V/m

Command	Trace that is transferd		
CURR	Trace of Current		
00	Trace of save data 1		
99	Trace of save data 100		

(Refer to "24.3 Transfer the data" about returned data.)

Command	Remote control	
ON	Any operation from the keys or the encoder of the main body will not be accepted. Control the unit with RS-232C commands.	
OFF	The operation from the keys or the encoder of the main body and RS-232C commands will be accepted.	

Command	Offset level		
50	Offset level is set to 0dB.		
75	Offset level is set to 5.7dE		
(1, 1,, 1,, 1,, 1,, 1,)			

50) Clearing of saved trace-data and parameter

Command: MCLR*** (***=WALL, SALL, W00 to W99, S00 to S99)

51) Request save of setting parameter

Command: SVST

* return command: OK

25.4 Input the frequency

For the items written (*****=Refer to [25.4 Input the frequency]) in [25.3 Command description]

above, enter a frequency as follows.

*****=0.0k to 999.9k[0.1step, unit: Hz]

0.0M to 999.9M[0.1step, unit: Hz]

MSA338(E/TG): 0.0000G to 3.3G[0.0001step, unit: Hz]

MSA358: 0.0000G to 8.5G[0.0001step, unit: Hz]

- * However, the offset frequency and zone width can be input only in the range decided by the center frequency and frequency span. The value out of the range becomes error.
- * Values of the offset frequency and the zone width will change as you alter the frequency span.

25.5 Writing of original compensation data

On the case of electric field strength measurement used the antenna prepared by the user, or, on the case of magnetic field strength measurement used the magnetic field probe prepared by the user, it is necessary to write the data of the antenna gain or the magnetic probe field compensation coefficient to MSA338(E/TG)/MSA358 main unit. Please write the antenna gain or the magnetic probe field compensation coefficient according to the following description. There are two kinds of methods, "method 1: use PC software MAS300 (optional)" and "method 2: use communication program which is prepared by user".

1) Preparation things

- · RS-232C interface cable MI180
- · Windows[®] PC (with RS-232C interface) * It is not writable with MSA338/MSA358 main unit only.
- · PC software MAS300 (case of "Method 1 of writing data")

2) Write-in data

As example, the compensation data (antenna gain) of antenna M305 and the compensation data (compensation coefficient) of magnetic field probe CP-2S are shown below.

Frequency	300MHz	350MHz	400MHz	450MHz	500MHz
Antenna gain	0.0dBi	1.0dBi	1.4dBi	1.4dBi	0.0dBi

· Compensation data (antenna gain) of antenna M305	5.
--	----

· Compensation data (compensation coefficient) of magnetic field probe CP-2S.

Frequency	10MHz	100MHz	1GHz	2GHz	3GHz
Compensation coefficient	86.7dB	69.2dB	50.7dB	44.9dB	40.1dB

Command	Clearing data	
WALL	All of saved trace-data	
SALL	All of saved-parameter	
W00	Trace-data of save-No. 00	
W99	Trace-data of save-No. 99	
S00	Parameter of save-No. 00	
S99	Parameter of save-No. 99	

* Here, although the number of data is five points, it is possible to write even the data of maximum of ten points. Data cannot be written in 0Hz.

3) Method 1 of writing data

The method which used the optional PC software MAS300.

* Please use MAS300 of the version more than 1.03b.

The software can be updated from our website.

1. Write the antenna gain to text file.

Please create a new text file by new creation of a personal computer, and open by the text editor. • Format

"Frequency": "Antenna gain", "Frequency": "Antenna gain", "Frequency": "Antenna gain", "

Example) case of M305

300M:0.0DBI,350M:1.0DBI,400M:1.4DBI,450M:1.4DBI,500M:0.0DBI

* Please write unit with a capital letter. Moreover, Frequency can also use G (GHz).

2. It writes in by PC software MAS300.

Connect the personal computer to MSA338(E/TG)/MSA358 by MI180. Turn on the power of MSA338(E/TG)/MSA358. Start the PC software MAS300. Please set the same baud rate of MSA338(E/TG)/MSA358 and MAS300. (Refer to "24. Data Output" for details)

On the case of electric field strength measurement, please choose [File] \rightarrow [Write E/F User Data], on the case of magnetic field strength measurement, please choose [File] \rightarrow [Write M/F User Data], from the upper menu of software, and select the text file which made some time ago. Then, data is written.

4) Method 2 of writing data

It is method of writing in which does not use MAS300. A user needs to prepare communication program.

1. Prepare the RS-232C communication software.

Connect the personal computer to MSA338(E/TG)/MSA358 by MI180. Turn on the power of MSA338(E/TG)/MSA358.Start the RS-232C communication software. Please set the same baud rate of MSA338(E/TG)/MSA358 and software, and unite the setting of communication. (Refer to "24. Data Output" for details.)

2. Write the data

Please transmit data of the following format to MSA338(E/TG)/MSA358 from RS-232C communication software.

 \cdot Format

Case of compensation data of electric field strength measurement.

EFUSER"Frequency":"Antenna gain", "Frequency":"Antenna gain", …

Case of compensation data of magnetic field strength measurement.

MFUSER"Frequency":"Compensation coefficient", "Frequency":"Compensation coefficient", … Example) case of CP-2S

MFUSER10M:86.7DB,100M:69.2DB,1G:50.7DB,2G:44.9DB,3G:40.1DB

* Please write unit with a capital letter.

3. After writing is completed correctly, "OK" is returned from MSA338(E/TG)/MSA358.

5) How to use

1. Please set the measuring function of MSA338(E/TG)/MSA358 to electric field strength measurement mode or magnetic field strength measurement mode.

On the case of electric field strength measurement, please select [MEAS] \rightarrow [E/F ANT], on the case of magnetic field strength measurement, please select [MEAS] \rightarrow [M/F PROBE],

Please push [F1] and display [USER] on the upper of [F1].

Now, electric field strength measurement or magnetic field strength measurement by the written compensation data can be performed.

* When the power supply of MSA338(E/TG)/MSA358 is turned off at once and turned on again it returns from electric field strength measurement mode or magnetic field strength measurement mode. Then if it goes into electric field measurement mode or magnetic field strength measurement mode once again, it can measure in the same state.

6) About the antenna gain

In this contents, the antenna gain is meaning absolute gain [dBi].

When antenna gain is relative gain, it can change into absolute gain by adding +2.15dB.

 \cdot Absolute gain [dBi] = Relative gain [dBd] + 2.15dB

As reference, the conversion formula to electric field strength is using the following.

 $\cdot E = \sqrt{(480\pi^2 \times Pa \div (Ga \times \lambda^2))}$

E: Electric field strength [V/m] Pa: Received electric power [W] Ga: Antenna gain [times] = $10^{(antenna gain [dBi] \div 10)}$ λ : Wavelength [m] = $(3 \times 10^8) \div$ frequency [Hz]

25.6 Sample program

An example program to send following setting with RS-232C is shown below:

Setting: Center frequency 1GHz

10		'FREQ SETTING
20	OPEN "COM1:N81N" AS #1	
30	PRINT #1 "FREQ1G";	"FREQ1G" OUTPUT
40	INPUT #1 A\$	""OK" READ
50	CLOSE #1	

26. PC Software (optional)

This is the software MAS300 that controls MSA338(E/TG)/MSA358 by RS-232C. All setting can be performed from PC. Although the 251 points of trace data is displayed on horizontal axis in the screen of the MSA338(E/TG)/MSA358,1001 points of trace data are taken per sweep. When this software is used, all of these 1001 points data are transformed to a PC and trace is displayed at high resolution.

Corresponding OS

Hardware Requirements

Computer that is able to act normally Windows[®], and able to use the COM port and CD-ROM drive.

Screen size 1024x768 or more computers.

Operating system

Windows[®] 2000/Me/NT 4.0/XP/Vista/7

Communication method

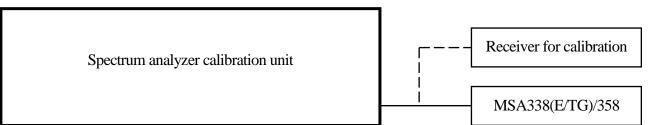
Bidirectional communication by RS-232C.

Installation procedure

- 1. Start windows[®].
- 2. Insert the MAS300 software CD into the CD-ROM drive.

The setup will start automatically and the initial screen will appear.

- 3. Follow the instructions on the screen.
- * If the setup does not start,
 - 1. Double-click on the My Computer icon.
 - 2. Double-click on the CD-ROM icon.
 - 3. Double-click on "setup.exe".
 - 4. Follow the instructions on the screen.


Refer to the "README" in the MAS300 for details.

* Please inquire of our sales agent about the update of software.

27. Basis Performance Test (MSA338(E/TG)/358)

To keep the quality of the unit, regular performance testing is recommended. This section describes a method and specification of basic performance testing. If a problem is found in the results of basic performance testing, or formal testing is needed, please contact the dealership where you purchased the product, or contact us.

[Connection diagram]

27.1 Frequency characteristics

Adjust the output level of the spectrum analyzer calibration unit (thereafter, "calibration unit") so that the displayed power value is -15dBm at each frequency for this unit, and measure the absolute value with a receiver for calibration (microwave power meter, etc.).

Setting of	of MSA338(E/	FG)/358			
Center	Frequency	RBW	Specifications	Measurement value	Judgment
frequency	span				
10MHz	10MHz	3MHz	Within Reference±2.0dB±1dot		
100MHz	10MHz	3MHz	Reference		
1GHz	10MHz	3MHz	Within Reference±1.0dB±1dot		
2GHz	10MHz	3MHz	Within Reference±1.0dB±1dot		
3.3GHz	10MHz	3MHz	Within Reference±1.0dB±1dot		
6.2GHz *1	10MHz	3MHz	Within Reference±1.0dB±1dot		
8.5GHz *1	10MHz	3MHz	Within Reference±1.0dB±1dot		

• Setting of MSA338(E/TG)/358

U		/
Reference level	:	-15dBm
VBW	:	1MHz
Sweep time	:	1s
Detection mode	:	SMPL
Display scale	:	2dB/div

*1 MSA358 only

 \cdot Setting of calibration unit

:

- Frequency
- Same as a center frequency of MSA338(E/TG)/358.
- Output power : Adjust the power indication of MSA338(E/TG)/358 to -15dBm.

27.2 Accuracy of reference level

Adjust the output level of the calibration unit so that the displayed value of this unit is the 0th div from the top, and calibrate the absolute value with the receiver for calibration (microwave power meter, etc.).

Setting of MSA338(E/TG)/358	Specifications	Measurement value	Judgment	
Reference level	Specifications	wieasurement value		
+10dBm	within ± 1.4 dB ± 1 dot			
0dBm	within ±1.4dB±1dot			
-10dBm	within ± 1.4 dB ± 1 dot			
-15dBm	within $\pm 0.8 dB \pm 1 dot$			
-20dBm	within ±1.4dB±1dot			
-30dBm	within ± 1.4 dB ± 1 dot			
-40dBm	within ± 1.4 dB ± 1 dot			

* Input attenuator switching error is included at the reference level other than -15dBm.

 \cdot Setting of MSA338(E/TG)/358

• Setting of calibration unit

	< · ·	- /
Center frequency	:	100MHz
Frequency span	:	10MHz
RBW	:	3MHz
VBW	:	1MHz
Sweep time	:	1s
Detection mode	:	SMPL
Display scale	:	2dB/div

Frequency :

Output power :

100MHz Adjust it so that the indicated value of MSA338(E/TG)/358 is at the 0th div from the top.

27.3 The display accuracy of the center frequency

Measure the frequency with the peak search function of MSA338(E/TG)/358.

Setting of MSA338(E/TG)/358		Specifications	Measurement	Judament	
Center frequency	Frequency span	RBW	Specifications	value	Judgment
100MHz	200kHz	3kHz	within ±50kHz±1dot		
100MHz	10MHz	30kHz	±4kHz		
100MHz	20MHz	100kHz			
100MHz	200MHz	100kHz	within ±360kHz±1dot ±RBW × 20%		
1GHz	20MHz	100kHz			
2GHz	20MHz	100kHz			
3.3GHz *1	20MHz	100kHz			
6.1GHz *2	20MHz	100kHz			
8.5GHz *2	20MHz	100kHz			

· Setting of MSA338(E/TG)/358

U	·	,
Reference level	:	-15dBm
VBW	:	AUTO
Sweep time	:	1s
Detection mode	:	SMPL
Display scale	:	10dB/div

*1 MSA338(E/TG) only *2 MSA358 only

· Setting of calibration unit

- Frequency : Same as a center frequency of MSA338(E/TG)/358.
- Output power : -15dBm
- * However, calibrate the signal generator in advance.

27.4 The display accuracy of the frequency span

Adjust the frequency of the calibration equipment so that the peaks are at the positions of f_1 and f_9 , and measure the frequencies of f_1 and f_9 . Calculate from f_1 and f_9 the display accuracy of the frequency span.

Setting of M	SA338(E/TG)/358		\mathbf{f}_1	f9		
Frequency span	Center Frequency	RBW	Specifications	Measurement value	Measurement value	$(f_9 - f_1)$	Judgment
200kHz	1GHz	3kHz	within $\pm 160 \text{kHz} \times 3\% \pm 1 \text{dot}$				
10MHz	1GHz	100kHz	within ±8MHz ×3%±1dot				
20MHz	1GHz	300kHz	within ±16MHz ×3%±1dot				
200MHz	1GHz	3MHz	within ±160MHz ×3%±1dot				
500MHz	1GHz	3MHz	within ±400MHz ×3%±1dot				
2GHz	1GHz	3MHz	within ±1.6GHz ×3%±1dot				
FULL(3.3GHz)*1	1.65GHz	3MHz	within ±2.64GHz ×3%±1dot				
2GHz *2	4.8GHz	3MHz	within ± 1.6 GHz $\times 3\% \pm 1$ dot				
2GHz *2	7.4GHz	3MHz	within ± 1.6 GHz $\times 3\% \pm 1$ dot				
FULL(8.5GHz)*2	4.25GHz	3MHz	within ±6.8kHz ×3%±1dot				

* f_1 : 1st div from the left on the trace screen f_2 : 9th div from the left on the trace screen

· Setting of MSA338(E/TG)/358

*1 MSA338(E/TG) only *2 MSA358 only

 \cdot Setting of calibration unit

Frequency	:	Adjust it to the positions of f_1
Output power		and f9. -15dBm
output power	•	15uDili

setting of MSA338	S(E/I)	G)/358
Reference level	:	-15dBm
VBW	:	AUTO
Sweep time	:	One step slower than
		AUTO
Detection mode	:	SMPL
Display scale	:	10dB/div

27.5 Linearity of the amplitude axis

Adjust the level of the calibration unit so that the peak is at the top of the amplitude axis (0th div), and regard the point set at that time as the reference. Gradually lower the output, starting from the reference, and measure the amplitude value of MSA338(E/TG)/358.

Setting of MSA338(E/TG)/358 Display scales	Output of calibration unit	Specifications	Measurement value	Judgment
	XdBm (adjust it to the 0th div)	Reference(-15dBm)	(-15dBm)	
10dB/div	X -10dBm	Within -25dBm±0.8dB±1dot		
	X-70dBm	Within -85dBm±1.6dB±1dot		
	XdBm (adjust it to the 0th div)	Reference(-15dBm)	(-15dBm)	
2dB/div	X-2dB	Within -17dBm±0.2dB±1dot		
	X -10dB	Within -25dBm±0.8dB±1dot		
· Setting of MSA338(E/TG)/358 ·	Setting of calibration unit		
Center frequency	: 100MHz	Frequency : 100MH	[z	
Frequency span	: 200kHz			
RBW	: 30kHz			

Frequency span	:	200kHz
RBW	:	30kHz
VBW	:	300Hz
Sweep time	:	0.3s
Detection mode		POS

-70-

MICRONIX

MICRONIX CORPORATION

2987-2, KOBIKI-CHO, HACHIOJI-SHI, TOKYO 193-0934 JAPAN TEL. +81-426-37-3667 FAX. +81-426-37-0227 URL: http://www.micronix-jp.com/