

Relationship between oscilloscope and spectrum analyzer amplitude

\Diamond This note explains the relationship between oscilloscope and spectrum analyzer amplitude.

[~*Application*~]

Both oscilloscopes and spectrum analyzers measure electrical signals.

The oscilloscope measurement results are displayed on the screen as horizontal axis: time, vertical axis: amplitude.

On the other hand, the measurement result of the spectrum analyzer is displayed on the screen as horizontal axis: frequency, vertical axis: amplitude.

This note describes the relationship between the amplitude of a sine wave signal measured with an oscilloscope and a spectrum analyzer.

When this signal is measured with a spectrum analyzer, the amplitude is displayed as an rms value and the sine wave (rms value) = (maximum value) $\div \sqrt{2}$, so it is about 0.707mV.

The notation in logarithmic units, decibels (dB), is often used in spectrum analyzers, so in that case, 0.707mV becomes $20 * \log (0.707mV) = about -3dBmV = about -63dBV = about 57dB \mu V$.

(Conversion from dBmV to dBV is minus 60 dB, and conversion from dBmV to dB μ V is plus 60 dB.)

Also, considering the impedance at 50 Ω , 0.707mV is about 1 \times 10⁻⁵ mW, and 10 * log (1 \times 10⁻⁵ mW) = -50dBm. These relationships are summarized below.

Oscilloscope		Spectrum analyzer					
MAX	Peak-to-peak	Voltage				Power (impedance 50 Ω)	
1mV	2mV	0.707mV	-3dBmV	-63dBV	$57 \text{dB} \mu \text{V}$	$1 \times 10^{-5} \text{ mW}$	-50dBm

 \uparrow This is for an oscilloscope input impedance of 50 Ω . When the input impedance is 1M Ω , the maximum value is about 2mV.

[\sim *System constitution* \sim]

- Handheld signal analyzer MSA500 series
- Handheld spectrum analyzer MSA400 series

*MICRONIX Corporation reserves the right to make changes in design, specification and other information without prior notice.

2020/04

MICRONIX Corporation

2987–2 Kobiki–cho, Hachioji–shi, Tokyo Japan Tel:+81–42–637–3667 Fax:+81–42–637–0227 MICRONIX